LOTUS: A (non-)LTE Optimization Tool for Uniform derivation of Stellar atmospheric parameters

Yangyang Li(李扬洋) 📴 and Rana Ezzeddine 📴^{1,2}

¹Department of Astronomy, University of Florida, Bryant Space Science Center, Gainesville, FL 32611, USA ²Joint Institute for Nuclear Astrophysics - Center for Evolution of the Elements, USA

(Received July 20, 2022; Revised XX XX, XXXX; Accepted XX XX, XXXX)

Submitted to AJ

ABSTRACT

Precise fundamental atmospheric stellar parameters and abundance determination of individual elements in stars are important for all stellar population studies. Non-Local Thermodynamic Equilibrium (Non-LTE; hereafter NLTE) models are often important for such high precision, however, can be computationally complex and expensive, which renders the models less utilized in spectroscopic analyses. To alleviate the computational burden of such models, we developed a robust 1D, LTE and NLTE fundamental atmospheric stellar parameter derivation tool, LOTUS, to determine the effective temperature $T_{\rm eff}$, surface gravity log g, metallicity [Fe/H] and microturbulent velocity $v_{\rm mic}$ for FGK type stars, from equivalent width (EW) measurements of Fe I and Fe II lines. We utilize a generalized curve of growth method to take into account the EW dependencies of each Fe I and Fe II line on the corresponding atmospheric stellar parameters. A global differential evolution optimization algorithm is then used to derive the optimized fundamental parameters. Additionally, LOTUS can determine precise uncertainties for each stellar parameter using a Markov Chain Monte Carlo (MCMC) algorithm. We test and apply LOTUS on a sample of benchmark stars, as well as stars with available asteroseismic surface gravities from the K2 survey, and metal-poor stars from *R*-process Alliance (RPA) survey. We find very good agreement between our NLTE-derived parameters in LOTUS to non-spectroscopic values within $T_{\rm eff} = \pm 30 \,\mathrm{K}$ and $\log g = \pm 0.20 \,\mathrm{dex}$ for benchmark stars. We provide open access of our code, as well as of the interpolated pre-computed NLTE EW grids available on Github , and documentation with working examples on Readthedocs \blacksquare .

Keywords: Astronomical techniques (1684), Spectroscopy (1558); Stellar atmospheres (1584), Stellar physics (1621), Stellar photospheres (1237); Fundamental

Corresponding author: Yangyang Li yangyangli@ufl.edu

parameters of stars (555), Astrometry (80), Effective temperature (449), Surface gravity (1669), Metallicity (1031)

1. INTRODUCTION

Precise characterization of stellar spectra is a key ingredient for understanding several fields of modern astrophysics, including the physical and chemical properties and abundances of stars (Asplund et al. 2009; Jofré et al. 2019), galactic formation and evolution (Audouze & Tinsley 1976; McWilliam 1997; Kobayashi et al. 2006), as well as macro and micro physical phenomena near the surface of stars (Miesch & Toomre 2009; Linsky 2017). This accurate level of characterization is also needed for the detection of extra-solar planets when using radial velocity methods (Vanderburg et al. 2016).

With the current inflow of stellar spectra from ongoing and future large observational spectroscopic surveys including, SDSS-V (Kollmeier et al. 2017, $R \sim 2000$ and ~ 22500), LAMOST (Liu et al. 2020, $R \sim 7500$; Cui et al. 2012; Zhao et al. 2012; Deng et al. 2012, $R \sim 1800$), APOGEE (Ahumada et al. 2020, $R \sim 22500$), RAVE (Steinmetz et al. 2020, R~7500), GALAH (De Silva et al. 2015, $R \sim 28000$), as well as the upcoming WEAVE (Dalton et al. 2016, $R \sim 5000$ and $R \sim 20000$), 4MOST (de Jong et al. 2019, $R\sim 20000$) and PLATO (Miglio et al. 2017), stellar spectroscopy will be providing $\sim 10^5$ of golden opportunities to study the chemical and dynamical properties of stars in the Galaxy to help understand its build-up history and evolution.

Atmospheric fundamental stellar parameters, including $T_{\rm eff}$, log g, [Fe/H] and microturbulence velocity $v_{\rm mic}$, as well as chemical abundances of stars, are determined from the observed spectra of a given star by fitting theoretical synthetic spectra based on assumptions of geometric structures (1D versus 3D), radiative transfer assumptions (Local Thermodynamic Equilibrium; hereafter LTE, versus NonLocal Thermodynamic Equilibrium; hereafter NLTE). Two classical methods are commonly used to derive stellar atmospheric parameters from stellar spectra: either 1) by iteratively fitting the observed spectra to synthetic spectral models until a best-fit match is met at the corresponding stellar parameters, or 2) by measuring chemical abundances of FeI and FeII lines from equivalent widths (EW) measurements, and employing optimization of excitation and ionization equilibrium by changing the stellar parameters iteratively until trends with excitation potential energies (χ) and reduced equivalent widths (log(EW/λ)) of the lines are minimized.

While the former method of spectral synthesis might outperform the latter in crowded spectral regions or spectra dominated by strong lines $(\log(EW/\lambda) > -4.5)$, the EW method generally requires less calculation time and resources than synthetic spectra, making it a simpler and more widely applied tool to measure atmospheric stellar atmospheric parameters and chemical abundances. Classical radiative transfer models for deriving stellar parameters and chemical abundances from observed spectra assume LTE. Under LTE, the gas and chemical particles throughout the stellar atmosphere satisfy the Saha-Boltzmann excitation and ionization balance equations. Several stellar atmospheric parameter tools implementing classical 1D and LTE approximations for spectroscopic analyses already exist and are widely used (e.g., MATISSE (Recio-Blanco et al. 2006), MyGIsFOS (Sbordone et al. 2014), the APOGEE pipeline ASCAP (García Pérez et al. 2016), GALA (Mucciarelli et al. 2013), DOOp (Cantat-Gaudin et al. 2014), ARES (Sousa et al. 2015), StePar (Tabernero et al. 2019), and FASMA (Tsantaki & Andreasen 2021) using the EW method).

3

The LTE assumption utilized by all of these tools is, however, not physically motivated when applied to evolved giants and/or metal-poor stars (Lind et al. 2012; Ezzeddine et al. 2017; Mashonkina et al. 2017; Amarsi et al. 2020). Inelastic collisional interactions between atoms and electrons or neutral hydrogen in the atmospheres of cool stars usually drive the local conditions in these atmospheres towards LTE. In metal-poor and giant stars, limited electron donors from metals are not able to induce enough collisions to maintain collisional equilibrium in the line-forming regions (Hubeny & Mihalas 2014), which drive line formation away from LTE (Mihalas & Athay 1973; Bergemann et al. 2012). Quantified deviations in abundances and stellar atmospheric parameters from LTE are commonly known as NLTE effects (Asplund 2005), which are mainly driven by deviations from statistical equilibrium or kinematic equilibrium.

To the authors' current knowledge, the only stellar atmospheric and chemical abundance code taking NLTE effects into account is PySME (Wehrhahn 2021). It is based on the spectroscopic analysis code Spectroscopy Made Easy (SME; Piskunov & Valenti 2017), which has the capability to synthesize NLTE spectra of individual spectral lines. It can become tedious and time demanding to apply for a line-by-line stellar parameter determination. Therefore, a code that can automatically derive stellar parameters using EW is much needed, which is the main motivation of this paper as explained in more detail in the following sections.

In this work, we present a fast, automatic and robust spectroscopic analysis tool, LOTUS, which stands for a NLTE Optimization Tool Utilized for the derivation of atmospheric Stellar parameters, which allows the derivation of $T_{\rm eff}$, log g, [Fe/H] and $v_{\rm mic}$ based on input EW measurements of FeI and FeII lines from stellar spectra. Either or both LTE and NLTE modes can be chosen for the benefit of comparisons. As compared to traditional model-by-model full NLTE calculations, LOTUS can shorten the time of the determination of stellar parameters in NLTE assumption from several hours or even days (Hauschildt et al. 1997) to $\sim 15 - 30$ mins for each star. A Monte-Carlo Markov Chain (MCMC) analysis is also implemented to precisely estimate the uncertainties of the derived parameters. We test and apply our code on several benchmark stars, and stellar surveys with available non-spectroscopic atmospheric parameters for comparison and validation of our results.

The rest of the paper is organized as follows: In Section 2, we present a detailed description of LOTUS, and describe the input models for our NLTE calculations, as well as a description of the different modules of the code. In Section 3, we test our code and apply it to derive and compare the derived parameters of benchmark stars, and stars with non-spectroscopic derived parameters. In Section 4, we apply the code to a large sample of metal-poor stars and discuss the NLTE effects obtained via LOTUS. In Section 5, we present a discussion on the caveats and limitations of the code, and finally, in Section 6 we present a summary of our results and conclude.

2. DESCRIPTION OF LOTUS

LOTUS is designed to derive the fundamental atmospheric stellar parameters, namely, effective temperature (T_{eff}) , surface gravity $(\log g)$, metallicity ([Fe/H]) and microturbulent velocity (v_{mic}) of FGK type stars, by implementing observed measurements of equivalent widths (EW) for FeI and FeII lines as input. An example of a user input EW linelist is shown in Listing 1 below. The transition wavelength obs_wavelength (in Å), element and ionization stage (FeI or FeII), measured EW obs_ew in (mÅ) and excitation potential energy EP (in eV) are required.

2	4787.8266,FeI,44.2,3.00
3	4788.7566,FeI,65.5,3.24
1	4789.6508,FeI,83.3,3.55
5	6456.3796,FeII,59.2,3.9
0	

Listing 1. Example of an input file format of observed EW measurements for FeI and FeII lines provided by users for LOTUS. obs_wavelength are in Å, obs_ew in mÅ, and obs_ep in eV.

LOTUS's general modes of functionality are as follows: (i) Fe I and Fe II abundances are derived by interpolating a generalized curve of growth (GCOG) for each line in a pre-computed grid of theoretical EW in both LTE and NLTE, following the work done by Boeche & Grebel (2016). (ii) The stellar parameters are then derived by minimizing the slopes for excitation and ionization equilibrium, iteratively using a global minimization module. Finally, (iii) uncertainties of the derived atmospheric parameters are estimated utilizing a Markov Chain Monte Carlo (MCMC) algorithm. We describe each of these modules in detail in sub-section 2.2 below, after listing the input and radiative transfer models used in Section 2.1.

2.1. Input Models

2.1.1. Stellar Atmosphere Models

LOTUS incorporates 1D, LTE MARCS stellar atmospheric models (Gustafsson et al. 1975, 2008), covering a wide range of stellar parameters typical for FGK stars. Spherical atmospheric models were used for log g < 3.5, otherwise, plane-parallel models were adopted. The grid of MARCS model atmosphere available online¹ offer reasonable coverage for the stellar parameters, however they exhibit wide gaps in effective temperature (steps of ~ 250 K), surface gravity (steps of ~ 0.5 cgs), and metallicity (steps of ~ 0.25 - 0.50 dex) to optimally explore the parameter space. We utilize the MARCS in-

Figure 1. A flow diagram describing the working modules of LOTUS. Three main modules are used to derive the stellar parameters and their uncertainties: (i) An interpolation Module, (ii) a Global Minimization Module, and (iii) an Uncertainty Estimation Module. Input includes EW measurements of FeI and FeII of the absorption lines measured in the spectra. Users can define the number of σ clipping required to remove outliers (see Section 2.4.3 for details). Additionally, a halt condition for the value of the smallest allowable minimization function threshold can also be defined by users (see Section 2.4.3 for details).

terpolation subroutine iterpol_marcs.f² written by Thomas Masseron, to produce a higher resolution grid, with our final parameter grid ranging from 4000 K to 6850 K for T_{eff} (steps of 50 K), log g from 0.0 to 5.0 (steps of 0.1), [Fe/H]

¹ https://marcs.astro.uu.se/

² http://marcs.astro.uu.se/software.php

from -3.5 to +0.5 (steps of 0.5) and $v_{\rm mic}$ from 0.5 to 3.0 km s⁻¹ (steps of $0.5 \,\rm km \, s^{-1}$).

2.1.2. Iron Model Atom

Computing theoretical NLTE FeI and FeII EWs requires the input of a comprehensive iron model with up-to-date radiative and collisional atomic data. For our EW grid calculations, we adopt a well-tested FeI/FeII model atom containing 846 Fe I and 1027 Fe II lines Ezzeddine et al. (2016, 2017, 2020). The atom includes absorption line transitions spanning the near-UV to the near-IR, extending the range of wavelength from ~ 1000 to 10^7 Å. The model also carefully considers hydrogen collision and electron collision processes from quantum atomic data, particularly implementing ion-pair production and mutual-neutralization processes from Barklem (2018). Extensive details on the build-up of the atom and the corresponding atomic data are presented in Ezzeddine et al. (2016) and Ezzeddine et al. (2020).

2.1.3. NLTE Radiative Transfer

We utilize the NLTE radiative transfer code MULTI2.3 to solve for statistical equilibrium populations and derive the theoretical NLTE EW for the FeI and FeII lines in our atom. The code utilizes the Approximate Lambda Iteration (ALI) (Rybicki & Hummer 1991) to iteratively determine the populations using the comprehensive FeI/FeII model atom described in Section 2.1.2. MULTI2.3 also solves for LTE populations using the classical Saha and Boltzmann equations, which is output as a departure coefficient, b_i , where $b_i = n_i(\text{NLTE})/n_i(\text{LTE})$ (Wijbenga & Zwaan 1972), where n is the level population for the corresponding line transition i.

2.1.4. Linelist Selection

The linelist selection is crucial for the accurate derivation of FeI and FeII chemical abundances and stellar parameters using the EW

method, especially for cooler stars (e.g. FGK stars) since they have much denser spectral line regions containing blended lines. Therefore, we choose a comprehensive list of FeI and FeII from the Gaia-ESO line list (Jofré et al. 2014; Heiter et al. 2015, 2021), covering the wavelength ranges from 4750 to 6850 Å and from 8500 to 8950 Å. Additional lines from the R-Process Alliance (RPA) survey (e.g., Hansen et al. 2018; Sakari et al. 2018; Ezzeddine et al. 2020; Holmbeck et al. 2020) have also been added to account for lines common in metalpoor stars, with corresponding atomic data and references in (Roederer et al. 2018). We combine iron lines from both linelists, removing any duplicates in the process. Our final linelist is presented in Table 2.

2.2. Key Modules

Below we describe in detail the key components and modules of the LOTUS functionalities. An illustrated flow diagram of the workings of the code is also shown in Figure 1, demonstrating the connection between the different modules.

2.2.1. EW Interpolation Module

Traditional curve of growth (COG) methods to derive abundances do not take into account the inter-dependencies of the EW of the lines on stellar parameters such as $T_{\rm eff}$, $\log q$, [Fe/H] and $v_{\rm mic}$. For some lines, however, EW can have strong and arbitrary dependencies on some atmospheric stellar parameters in given parameter space. Figure 2 and Figure 3 demonstrate these dependencies, where theoretical values for EW from our NLTE grid are shown as a function of T_{eff} and $\log g$ (left panel) and for T_{eff} and $v_{\rm mic}$ (right panel) for the Fe I line at 4070.768 Å, and the FeII lines at 6247.545 Å, respectively. The metallicity for both plots has been fixed at [Fe/H] = -2.00 for demonstration purposes. It is clear that the EWs vary arbitrarily in the T_{eff} -log g space with resonance peaks show-

Figure 2. GCOG of EWs as a function of two-dimensional stellar parameters of the Fe I line at 4070.77Å, with EP=3.24 eV. [Fe/H] is kept constant at -2.00 for demonstration purposes and to avoid cluttering the plot.

Figure 3. Same as Figure 2 but for the Fe II line at 6247.55Å with EP=3.89 eV.

ing throughout the grid at different parameters while demonstrating a smoother dependence in the T_{eff} - v_{mic} parameter space for the Fe I line at 4070 Å. The Fe II line at 6247 Å, however, shows smoother dependence on T_{eff} and $\log g$ for lower $T_{\rm eff}$ and higher log g values, with stronger resonance peaks showing at higher T_{eff} and lower $\log q$. We also observed this behavior when fixing Fe_I abundances, in that increasing $T_{\rm eff}$ will decrease EW while EW is mostly insensitive to $\log q$ variation; For Fe II increasing T_{eff} will increase EW while increasing $\log q$ will decrease EW, which has been qualitatively proven in Chapter 17.5 of Hubeny & Mihalas (2014). To take into account such important dependencies in our codes, which can strongly affect our derived abundances and thus our stellar parameter derivation, we compute a Generalized Curve of Growth (GCOG) for each FeI and FeII line in our linelist. This takes into account each line's dependence on each of the stellar parameters, including T_{eff} , log g, [Fe/H], and v_{mic} . Such methods have also been implemented in previous work such as in Osorio et al. (2015) and Boeche & Grebel (2016). Interpolated GCOGs are then stored as libraries in our code, and utilized in the optimization module afterward to derive the FeI and FeII abundances.

2.3. Abundance Determination module

To derive the Fe I and Fe II abundances, we fit multivariate polynomials to each line, by deriving the relation between the iron abundance of the line with T_{eff} , $\log g$, v_{mic} and EW, denoted as A (Fe) = $P(T_{\text{eff}}, \log g, \nu_{mic}, \text{EW})$. The detailed form of P can be written as:

$$\sum_{i_1+i_2+i_3+i_4 \le n} a_{i_1i_2i_3i_4} (T_{\text{eff}})^{i_1} (\log g)^{i_2} (\nu_{mic})^{i_3} (\text{EW})^{i_4}$$
(1)

where i_m (m=1,2,3,4) is the power of the 3 stellar parameters (T_{eff} , log g and v_{mic}) as well as EW. Possible values for i_m are any positive integer as long as the sum of all these powers is

Table 1. Interpolation intervals chosen for different stellar types considered in LOTUS.

stellar parameter	types	intervals
$T_{\rm eff}$ (K)	К	[4000, 5200]
	G	[5200, 6000]
	\mathbf{F}	[6000, 6850]
$\log g$	supergiant	[0.0, 0.5]
	giant	[0.5,3.0]
	subgiant	[3.0, 4.0]
	dwarf	[4.0, 5.0]
[Fe/H]	very metal poor	[-3.5, -2.0]
	metal poor	[-2.0, -0.5]
	metal rich	[-0.5, 0.5]

less than or equal to the power degree of the polynomial n. $a_{i_1i_2i_3i_4}$ is the product of the coefficients of each of these variables. The criteria for choosing n depends on the behavior of theoretical models within a specific parameter range of stellar parameters and is described in more detail in Section 2.3.1 below.

2.3.1. Selection of Interpolator

The selection of the linelist utilized to derive stellar parameters is dependent on the spectral type of the star, as some lines can be blended or strong in some cool high metallicity stars, whereas these same lines could also be blendfree and weaker for hotter, metal-poor stars. Therefore, the multivariate polynomial functions defined in Section 2.3 and used to derive the abundances of Fe I and Fe II lines depend on the choice of linelist. We thus pay special attention to the choice of interpolator by identifying the best selection of linelist per spectral type (or stellar parameters). Therefore, instead of interpolating in the whole parameter space for all the lines, we pre-define that the GCOGs fit only the abundances of the lines we pre-selected and chose to use within tested intervals of stellar parameters, according to an initial guess of spectral types that the users can insert as an

input in the code. Our choice of the intervals of different stellar parameters for each spectral types are listed in Table 1. For example, if an initial guess is chosen such that the target star is a metal-poor G giant, the multivariate polynomial will fit the abundance of each line versus other atmospheric parameters using the grid points falling into the range of $T_{\rm eff}$ from 5200 K to 6000 K, log g from 0.0 to 3.0 and [Fe/H] from -2.0 to -0.5.

In order to choose the best interpolator per spectral type (i.e., the optimal n) among several multivariate polynomials as defined in Equation 1, we use a Bayesian Information Criteria (BIC) to select the best polynomial function for each line based on the mean residual differences between the theoretical EWs at the nodes of our pre-computed NLTE grid (computed at a combination of T_{eff} , log g, [Fe/H], and v_{mic}), to the EWs interpolated at these parameters. We assume that the optimal model is among the polynomials with degree=2,3,4,5. The BIC was calculated such as:

$$BIC = n \ln\left(\frac{SSR}{n}\right) + k \ln(n) \tag{2}$$

where SSR is the sum of the squared residuals between the theoretical EWs and the interpolated EWs from models at specific nodes of the grid, and n is sample size (here we choose n = 4000 nodes in each spectral type interval). k is a free parameter (including coefficients and slope intercept), which can be calculated as $k=C_{d+4}^d$, where d is the degree of the polynomial, and 4 is chosen as the number of dependent variables for each interpolated EW (namely, T_{eff} , $\log g$, [Fe/H] and v_{mic}).

We thus chose the best interpolator for each spectral type interval as that with the lowest BIC value. In Fig. 4, we show the differences between the interpolated EW using the lowest BIC interpolator as compared to the (noninterpolated) EW directly from MULTI2.3, categorized as a function of stellar spectral types (x-axis) and metalicities (different panels). We observe that there exist no clear dependencies between differences and spectral types and metalicities. The average of differences is within 0.01 for all stellar spectral types and metalicities. We pre-define the default interpolated EW uncertainty (also a threshold for the lowest acceptable BIC) in LOTUS as 6 m Å for each line. However, we also design the code to allow users to input their acceptable uncertainty limits, in which case LOTUS will drop a given Fe I or Fe II from the linelist if the computed BIC is larger than this uncertainty, and will subsequently be excluded from the lines used to derive the stellar parameters in the optimization module.

2.3.2. EP Cut-off

The NLTE abundances derived from low excitation potential FeI can yield larger abundances as compared with those derived from high-excitation FeI and FeII lines, especially using 1D atmospheric models (Amarsi et al. 2016). Such differences can reach up to $0.45 \,\mathrm{dex}$ for some Fei lines, and can affect our derived stellar parameters as documented in several studies including Bergemann et al. (2012); Lind et al. (2012) as well as others. We thus follow previous literature studies by introducing low-excitation potential cut-offs for Fe I lines with EP(Fe I) < 2.7 ev/2.5 ev/2.0 eV for stars with [Fe/H] < -0.5, depending on the number of FeI and FeII lines measured in the stars and the optimization convergence criteria (see Section 2.4); We conduct no cut-offs for stars with [Fe/H] > -0.5.

2.4. Optimization Module

Once reliable linelists and interpolators per spectral types of input target stars have been chosen, as explained in Section 2.3 above, the derived FeI and FeII abundances are fed into the optimization module with an initial guess of the general type of the target star. We note that users don't need to specify an initial guess

Figure 4. Differences (in mÅ) between the interpolated EWs (using interpolators chosen at the lowest BIC values) and the EWs from NLTE theoretical calculations computed directly using MULTI2.3. Each violin plot shows the distribution of the means of such differences for a random 4000 nodes within the spectral type interval of the pre-computed EW library. Red lines are marked as the means of the distributions while purple lines are for the medians. The differences are shown for different metallicity ranges as indicated in each panel.

of each stellar parameter, as it suffices to only chose an initial guess of the spectral type as an input to LOTUS, which is then assigned the corresponding interpolation parameters interval as indicated in Table 1.

2.4.1. Optimization Conditions

The general principle of optimization is to adjust stellar parameters iteratively to derive optimal combinations of stellar parameters that can satisfy the following three conditions: (i) excitation equilibrium, or minimizing the trend (i.e., slope) of the FeI abundances as a function of excitation potential EP, (ii) ensuring ionization equilibrium or minimizing the differences between the abundances derived from the Fe I and Fe II lines, and (iii) minimizing the trend (i.e., slope) between the abundances derived from the Fe I lines versus the reduced equivalent widths, REW = $\log(EW/\lambda)$.

Therefore, we derive T_{eff} by ensuring excitation equilibrium, $\log g$ by ensuring ionization equilibrium, and v_{mic} by minimizing the trend between FeI abundances versus line strength (REW). [Fe/H] was then determined by averaging the abundances derived from the FeI and FeII abundances.

Figure 5. Derived FeI (black circles) and FeII (red circles) line abundances versus reduced equivalent widths (upper panel) and excitation potential energies χ (lower panel) for selected lines in the metal-poor benchmark star HD122563. The parameters indicated on the top are the optimal values derived using the global minimization (differential evolution) algorithm in LOTUS. Dotted lines are the best linear fits to the FeI lines in each panel. The labels at the upper left corner of each panel are the slopes of the fits and their corresponding standard deviations.

2.4.2. Targeted Optimized Object Function

In order to find the best combination of stellar parameters that satisfy the optimization conditions defined in Section 2.4.1 within our parameter grid, we first combine these conditions into a targeted optimization object function \mathcal{F} , such as:

$$\mathcal{F} = \left(\frac{s_{\chi,1}}{\sigma_{\chi,1}}\right)^2 + \left(\frac{s_{REW,1}}{\sigma_{REW,1}}\right)^2 + \left(\frac{\bar{A}_1 - \bar{A}_2}{\sigma_{1-2}}\right)^2 (3)$$

where the subscripts "1" and "2" correspond to Fe I and Fe II, respectively. $s_{\chi,1}$ is the slope between Fe I abundances and EP, and $\sigma_{\chi,1}$ is its uncertainty, $s_{REW,1}$ is the slope between the Fe I abundances and REW, and $\sigma_{REW,1}$ is its uncertainty. \bar{A}_1 and \bar{A}_2 are the mean abundances for Fe I and Fe II, respectively, while σ_{1-2} is the standard deviation of the differences between \bar{A}_1 and \bar{A}_2 . A converged solution is obtained at the combination of T_{eff} , $\log g$, [Fe/H] and v_{mic} , which minimizes \mathcal{F} globally.

2.4.3. Global minimization

To find the global minimization fit parameters within our grid, we adopt a differential evolution algorithm implementing a global minimization search. The goal is to minimize \mathcal{F} by starting with an initial population of candidate solutions, which are iteratively improved by retaining the fittest solutions that yield a lower \mathcal{F} values, until convergence for the best-fit parameters is met (Storn & Price 1996). The advantage of a differential evolution algorithm is that it has the benefit of handling nonlinear and nondifferentiable multi-dimensional objective functions while requiring few control parameters to steer the minimization. For our code, we select 100 initial populations (sets of solutions) with a combined rate of 0.3, which is a crossover prob-

11

ability that depends on how fast the algorithm moves to the next generation of populations. We try different weights between 0.8 and 1.2, to maintain a proper searching radius, at the same time making sure it does not slow down the convergence speed. We adopt $\mathcal{F} \sim 10^{-5}$ as the absolute tolerance for each iteration. After each iteration, we perform a 3σ -clipping on the abundances of the FeI and FeII lines to remove outliers. We adopt 3 iterations of outlier removing in total as a default, however, this number can be defined by the users depending on the quality of their EW measurements. An example of HD122563 with derived abundances of FeI and FeII versus REW and EP at optimal atmospheric parameters is shown in Figure 5.

2.5. Uncertainty Estimation Module

Since \mathcal{F} is a function of the stellar parameters, it can be described as $\mathcal{F}(\theta) = \mathcal{F}(T_{\text{eff}}, \log g, v_{\text{mic}})$. We can keep track of how \mathcal{F} changes along the perturbations around the optimal solution $\theta^* = (T_{\text{eff}}^*, \log g^*, v_{\text{mic}}^*), T_{\text{eff}}^*, \log g^*$ and v_{mic}^* are the parameters at the optimal solution. Indeed, \mathcal{F} resembles a likelihood function, which can be used to estimate the uncertainties on each of our derived stellar parameters from the Hessian Matrix such as:

$$SE(\theta^*) = diag(\sqrt{\mathcal{H}^{-1}(\theta^*)})$$
 (4)

where the Hessian Matrix for our objective function can be written as:

$$\mathcal{H}(\theta) = \frac{\partial}{\partial \theta_i \partial \theta_j} \mathcal{F}(\theta), 1 \le i, j \le 3$$
 (5)

For [Fe/H], we adopt the standard deviation of the Fe_I lines as the uncertainty.

However, in the above uncertainty framework, one strong assumption is that the standard errors obtained are symmetric around the mean values. This is only true if the probability distribution function of the derived parameters is a normal distribution. Normally, this is not the case. We, therefore, use a Bayesian framework to robustly determine the uncertainties on our derived stellar parameters. First, we construct a log-likelihood function using the same terms as in Equation 3 such as:

$$log(\mathcal{L}) = -\frac{1}{2} \sum_{i \le 3} \left[\left(\frac{s_i}{n_i} \right)^2 + \log(2\pi n_i) \right] \quad (6)$$

where n_i can be written as:

$$n_i = \sigma_i^2 + f^2 s_i^2 \tag{7}$$

where s_i represent the slopes $s_{\chi,1}$, $s_{REW,1}$ and $\bar{A}_1 - \bar{A}_2$ individually, while σ_i are their corresponding standard deviations. Introducing f will compensate the underestimation of the variance of each parameter assuming such an additional term is proportional to the model itself.

We then perform the Slice Sampling algorithm (Neal 2003), which is a type of Markov Chain Monte Carlo (MCMC) implemented in PyMC3, to complete the estimation of the posterior probability of each parameter. This method adjusts the step size automatically on every proposed candidate to match the profile of the posterior distribution without the need to choose a transition function. Such a framework ensures higher efficiency as compared to classical MCMC algorithms, such as Metropolis and Gibbs (Metropolis & Ulam 1949; Geman & Geman 1984). For all stellar parameters, we derive a normal distribution around the mean optimized value obtained from the global minimization module described in Section 2.4.3, and a standard deviation determined from the standard errors of the Hessian Matrix.

We use the logarithmic of f as an input variable to the MCMC sampler with a uniform distribution ranging from -10 to 1. In the sampling process, we consider 4 running chains with each containing 1000 draw steps and 200 tunes steps. Figure 6 shows the output from our posterior distribution of the stellar parameters

Figure 6. Marginalized posterior distributions of the stellar parameters of HD122563 based on the loglikelihood function in Equation 6. 1σ , 2σ and 3σ uncertainty region are denoted as solid contours in the two dimensional plot. The histograms show the marginalized posterior distributions for each parameter, respectively. Blue intersecting lines show the values obtained from our global optimization module.

and their uncertainty regions for a benchmark metal-poor star, HD122563. On the same plot, we also show the optimized parameters derived using our global optimization module (blue lines intersection), which agree very well.

3. TESTING LOTUS

We test LOTUS by deriving the atmospheric stellar parameters of benchmark stars with well constrained non-spectroscopic and fundamental stellar parameters, to quantify the precision of our derived parameters and their uncertainties. Below we present the results of these tests. We list the derived stellar parameters ($T_{\rm eff}$, log g, [Fe/H] and $v_{\rm mic}$) using LOTUS in LTE and NLTE of all the stars considered from Section 3.1 to 3.4 below, the sources of the EW, the number of Fe I and Fe II lines, and the excitation potential cut-offs for each star in Table 3.

Figure 7. Comparison of our derived stellar parameters, T_{eff} , $\log g$ and [Fe/H] using LOTUS to reference literature values derived non-spectroscopically (for T_{eff} and $\log g$) for HD122564, HD140283 and Arcturus. The mean NLTE values (red dashed lines) with their 1σ confidence intervals (red shadow areas) and our mean LTE values (blue dashed lines) with their 1σ confidence intervals (blue shadow areas), compared to to reference stellar parameters (black dots with error bars) for references on the x-axis. References are as follows: Q1996...Quirrenbach et al. (1996); G1999...Griffin & Lynas-Gray (1999); L2008...Lacour et al. (2008);R2011...Ramírez & Allende Prieto (2011);C2012...Creevey et al. (2012);F2013...Frebel et al. (2013);H2015...Heiter et al. (2015);C2015...Creevey et al. (2015);A2016...Amarsi et al. (2016);K2018...Karovicova et al. (2018);C2019...Creevey et al. (2019);K2020...Karovicova et al. (2020).

3.1. HD122563, HD140283, and Arcturus

The two metal-poor standard stars HD122563, HD140283 and the benchmark gi-

Figure 8. Differences in $\log g$ and T_{eff} between values derived using LOTUS versus reference values from Hawkins et al. (2016) for five GES metal-poor stars in their sample. Blue circles are LTE differences, while red squares are NLTE. Dashed lines in both panels are the zero baselines. Average systematic offsets are included in the text of each panel.

ant Arcturus have been widely analyzed independently in the literature. Their stellar parameters have therefore been derived spectroscopically (using 1D, 3D, LTE and NLTE) assumptions, or a combination of each), as well as using non-spectroscopic methods and fundamental equations (e.g., using photometric calibrations, asteroseismology, or interferometric angular diameters). All three stars are dubbed benchmark stars which have been selected as comparison standards for the largest stellar surveys, especially in the Gaia-ESO spectroscopic survey (Jofré et al. 2014; Heiter et al. 2015). We adopt EW measurements of each benchmark star from literature publications HD122563 (Frebel et al. 2013), as follows: HD140283 (Frebel et al. 2013), Arcturus (Jofré et al. 2014). Frebel et al. (2013) measured their EW from high-resolution spectroscopic observations ($R \sim 35,000$ in the blue and $\sim 28,000$ in the red) of HD122563 and HD140283, obtained with the MIKE spectrograph (Bernstein et al. 2003) on the Magellan-Clay telescope at Las Campanas. A $R \geq 70,000$ spectrum was used to derive EW for Arcturus from the VLT spectrum (Jofré et al. 2014). We derive the stellar parameters of each star and their uncertainties using LOTUS. We then compare our NLTE and LTE parameters with several independent determinations from the literature, as shown in Figure 7.

 $\begin{array}{ll} HD122563 - \mbox{We} & \mbox{derive} & T_{\rm eff} = 4620 \pm 59 \, {\rm K}, \\ \log g = 1.21 \pm 0.19, & v_{\rm mic} = 1.89 \pm 0.06 \, {\rm km \, s^{-1}} \end{array}$

 $[Fe/H] = -2.76 \pm 0.05$ NLTE, and in $\log g = 0.66 \pm 0.12,$ and $T_{\rm eff} = 4528 \pm 42 \, {\rm K}$ $v_{\rm mic} = 1.84 \pm 0.03 \,\rm km \, s^{-1}$ and $[Fe/H] = -2.98 \pm 0.03$. Creevey et al. (2012) derived $T_{\text{eff}} = 4598 \pm 41 \,\text{K}$ using an angular diameter observed with CHARA interferometry and Palomar interfer-Heiter et al. (2015)ometeric observations. derived $T_{\rm eff} = 4587 \pm 60 \,\mathrm{K}$ based on the angular diameters and bolometric fluxe calibrations, and $\log q = 1.44 \pm 0.24$ from fitting evo-Karovicova et al. (2018) lutionary tracks. updated CHARA interferometry with more data and derived an effective temperature of $T_{\text{eff}} = 4636 \pm 37 \,\text{K}$. Later in Karovicova et al. (2020), they updated their data reduction pipeline and derived a new $T_{\text{eff}} = 4635 \pm 34 \text{ K}.$ Our NLTE $T_{\rm eff}$ derived for HD122563 agrees very well with $T_{\rm eff}$ determined in these studies using interferometric angular diameters, within ~ 30 K, while the LTE $T_{\rm eff}$ deviated by ~ 100 K from the reference values.

And for $\log g$ results from the recent updated asteroseismic analysis are in agreement with the NLTE values in our work, which is close to the upper limit of 1σ confidence interval.

For $\log q$, Creevey et al. (2012) used evolutionary track models to derive $\log q = 1.60 \pm 0.04$ for HD122563, while Creevey et al. (2019) utilized the Hertzsprung telescope (SONG network node) to accurately measure the surface gravity of HD122563 using asteroseismology for the first time, and derived $\log q = 1.39 \pm 0.01$. In their paper they also compare to Gaia DR2 parallaxbased $\log q = 1.43 \pm 0.03$, which shows high consistency between these methods. Karovicova et al. (2020) also used evolutionary track models to derive $\log q = 1.404 \pm 0.03$ for the same star. Our LOTUS $\log q = 1.22$ in NLTE matches within ~ 0.1 dex the asteroseismic and parallax log q in Creevey et al. (2019), whereas the LTE value is 0.6 dex lower. This gives us strong confidence in LOTUS' ability to derive NLTE surface gravities from spectroscopic observations.

We then compare our NLTE and LTE [Fe/H] with those derived by Frebel et al. (2013) in 1D, LTE and Amarsi et al. (2016) in 3D, NLTE. Our NLTE [Fe/H] agrees with that determined in both studies within error bars, although Amarsi et al. (2016) derived a higher [Fe/H] = -2.5, which is likely due to considering 3D effects in their study.

HD140283—We derive $T_{\rm eff} = 5681 \pm 67 \,{\rm K}$, $v_{\rm mic} = 2.17 \pm 0.16$ $\rm km\,s^{-1}$ $\log q = 3.58 \pm 0.16$, $[Fe/H] = -2.64 \pm 0.05$ in NLTE, and $T_{\rm eff} = 5689 \pm 59 \,\mathrm{K}$, $\log g = 3.29 \pm 0.17$, and $v_{\rm mic} = 2.09 \pm 0.14 \ {\rm km \ s^{-1}}$ and $[{\rm Fe}/{\rm H}] = -2.72 \pm 0.04$ in LTE. Heiter et al. (2015) derived a mean $T_{\rm eff} = 5774 \pm 77 \,\mathrm{K}$ for the sub-giant in their Gaia-ESO benchmark sample from photometric calibrations. Additionally, Creevey et al. (2015) used the VEGA interferometer on CHARA to determine $T_{\rm eff} = 5534 \pm 103 \,{\rm K}$ (using $A_V = 0.0$ mag) and $T_{\rm eff} = 5.647 \pm 105 \,\rm K$ (using $A_V = 0.1$ mag). Karovicova et al. (2018) similarly derived an updated $T_{\rm eff} = 5787 \pm 48 \,\mathrm{K}$ from additional interferometric data points, and afterwards updating their values to 5792 ± 55 K in Karovicova et al. (2020). Our LTE and NLTE T_{eff} for HD140283 agree with the interferometric values derived in Creevey et al. (2015) within 120 K and Karovicova et al. (2018, 2020) within 80 K.

Heiter et al. (2015) derived $\log g = 3.58 \pm 0.11$ using fundamental relations and adopting independently derived parallax for the star. Creevey et al. (2015) also derived a mean $\log g = 3.69 \pm 0.03$, similarly from a combination of parallax and evolutionary track models. Both $\log g$ determined by parallax methods in Heiter et al. (2015) and Creevey et al. (2015) agree well with our NLTE value to within 0.05 dex. Karovicova et al. (2020) derived $\log g = 3.65 \pm 0.0$ from evolutionary models. Our LTE values is, unexpectedly, 0.3 dex lower.

Similar to HD122563, we compare our [Fe/H] with 1D,LTE and 3D,NLTE abundances in

Frebel et al. (2013) and Amarsi et al. (2016), respectively. Given that both studies derived their abundances by fixing $T_{\rm eff}$ and log g, while ours were derived simultaneously using the global optimization method adopted in LOTUS, we warrant serious direct comparison with their values. Nevertheless, our NLTE values agree very well with that derived in Frebel et al. (2013) within 1σ , whereas is 0.3 dex lower as compared to Amarsi et al. (2016).

derive Arcturus—We $T_{\rm eff} = 4306 \pm 41 \, {\rm K},$ $\log q = 1.61 \pm 0.15$, $v_{\rm mic} = 1.79 \pm 0.02$ $\rm km\,s^{-1}$ $[Fe/H] = -0.63 \pm 0.04$ in NLTE, and and $T_{\rm eff}$ $= 4364 \pm 47 \, \mathrm{K}$ $\log g = 1.68 \pm 0.17$ $v_{\rm mic} = 1.76 \pm 0.02 \,\,{\rm km}\,{\rm s}^{-1}$ and $[{\rm Fe}/{\rm H}] = -0.64 \pm 0.05$ in LTE. For T_{eff} Quirrenbach et al. (1996) used the MkIII Optical Interferometer on Mt. Wilson to determine Arcturus' angular diameter and derived $T_{\text{eff}} = 4303 \pm 47 \,\text{K}$. Griffin & Lynas-Gray (1999) collected all literature results of interferometry observation up to their study and derived $T_{\rm eff} = 4290 \pm 30 \, \text{K}$. Lacour et al. (2008) used the IOTA 3 telescope interferometer in the H band to derive $T_{\text{eff}} = 4295 \pm 26$ K. Additionally, Ramírez & Allende Prieto (2011) fit theoretical spectral energy distributions (SED) from visible blue bands to mid-infrared to derive $T_{\rm eff} = 4286 \pm 30 \,\text{K}$. Finally, Heiter et al. (2015) derived a mean of 4274 ± 83 K from different interferometric measurements, even though they warranted against using Arcturus as a benchmark given the large dispersion they obtained. All interferometric T_{eff} agree very well with our NLTE $T_{\rm eff}$ to within ~ 20 K. Our LTE value is, however, $\sim 80 \,\mathrm{K}$ higher.

Ramírez & Allende Prieto (2011) derived log $g = 1.66\pm0.05$ from HIPPARCOS parallax and isocrhone fitting, while Heiter et al. (2015) derived a fundamental log $g = 1.64\pm0.09$ based on seismic mass and log $g = 1.82\pm0.15$ from a compilation of parallax-based measurements. Our NLTE log g agrees very well with both results, whereas our LTE values is 0.1 dex higher. Griffin & Lynas-Gray (1999) derived $[Fe/H] = -0.68 \pm 0.02$ by comparing theoretical 1D, LTE SEDs with observed flux. Ramírez & Allende Prieto (2011) used a differential abundance analysis relative to the solar spectrum to derive $[Fe/H] = -0.52 \pm 0.04$. Our NLTE and LTE [Fe/H] are within 0.05 dex from each other, and agree well with the values derived in Griffin & Lynas-Gray (1999) while being ~ 0.1 dex as compared to differential abundance analysis in Ramírez & Allende Prieto (2011).

3.2. GES Metal-Poor Stars

We also test LOTUS on five metal-poor benchmark stars proposed by Hawkins et al. (2016)from the *Gaia*-ESO survey (GES). They determined $T_{\rm eff}$ via the Infrared Flux Method (IRFM) (Casagrande et al. 2011) using multiband photometry and $\log q$ by fitting to evolutionary stellar models. The FeI and FeII EWs for the sample stars were adopted from Hawkins et al. (2016), who used different EW measurements from different pipelines from the GES survey to derive their parameters. We use their EPINARBO (EPI) EWs derived with the FAMA pipeline following Magrini et al. (2013), as those were derived consistently. We compare our derived T_{eff} and $\log g$ using LOTUS to those in Hawkins et al. (2016) using the same Fe I and Fe II lines. We find that our NLTE parameters are on average within $5 \pm 29 \,\mathrm{K}$ from their $T_{\rm eff}$ and 0.11 ± 0.06 for $\log g$ on average, whereas our LTE parameters are within 18 ± 22 K and $0.22 \pm 0.08 \,\mathrm{dex}$ for T_{eff} and $\log g$ respectively. Star by star comparisons are shown in Figure 8. Our NLTE parameters agree better with the non-spectroscopic parameters from Hawkins et al. (2016), as compared to LTE.

A larger log g dispersion is obtained for HD106038 though with [Fe/H] = -1.25 of -0.25 and -0.45, for both our NLTE and LTE results, respectively. With a 3D, Non-LTE analysis, and *Gaia* EDR3 parallax, Giribaldi et al. (2021) derived log $g=4.29\pm0.04$, which is in ex-

Figure 9. Same as in Figure 8 for the GES-K2 sample stars from Worley et al. (2020).

cellent with our NLTE log $g=4.29\pm0.08$. Additionally, only 35 Fe I lines used by Hawkins et al. (2016) were used to derive the stellar parameters in LOTUS which decreases the accuracy of optimal values (see Section 5 for more details).

3.3. GES-K2 Stars

We also test LOTUS by deriving atmospheric stellar parameters of a sample of Kepler-2 (K2) star sample, which was also observed using a high-resolution UVES spectrograph on the VLT as part of the GES survey. Worley et al. (2020) combined the high-resolution spectroscopic observations from UVES, photometry, and precise asteroseismic data from K2 to derive selfconsistent stellar parameters for these stars, which represent a good non-spectroscopic sample to compare our stellar parameters derived with LOTUS to.

We adopt the EW measurements from Worley et al. (2020) derived from high-resolution UVES spectroscopic observations. We chose a total of 52 stars from their sample. The majority of the stars in the sample are metal-rich with [Fe/H] > -0.5. Only six stars have [Fe/H] < -0.5. Worley et al. (2020) used the IRFM to determine photometrically calibrated $T_{\rm eff}$ for all their stars following Casagrande et al. (2010, 2011).

The average uncertainties reported in Worley et al. (2020) for $T_{\rm eff}$ and $\log g$ of the GES-K2 stars are ± 65 K and ± 0.02 , respectively. We note that these values are close to our parameter grid resolution. We derive the stellar parameters for the 52 GES-K2 stars using LOTUS. Our results for $\log g$ and $T_{\rm eff}$ as compared to Worley et al. (2020) are shown in Figure 9 as a function of [Fe/H]. We find that the average differences between the LOTUS parameters are $\bar{\Delta}T_{\rm eff} = 74\pm 6$ K and $\bar{\Delta}\log g = 0.14\pm 0.01$ in LTE, and $\bar{\Delta}T_{\rm eff} = 16\pm 6$ K, $\bar{\Delta}\log g = 0.10\pm 0.01$ in NLTE. Both LTE and NLTE parameters

Figure 10. Same as in Figure 8 for the CHARA sample stars from Karovicova et al. (2020, 2021a,b).

agree well with the photometric and asteroseismic parameters from Worley et al. (2020) within their error bars, however our NLTE parameter derivations agree better for both $T_{\rm eff}$ and, particularly for log g.

3.4. CHARA Interferometry Stars

Finally, we apply and test LOTUS on a sample of stars with effective temperatures derived homogeneously from interferometric angular diameters observed by CHARA from Karovicova et al. (2020, 2021a,b). Karovicova et al. (2020) presented a study of interferometric observations of ten late-type metal-poor dwarfs and giants, whereas Karovicova et al. (2021a,b) showed a similar analysis for several metalrich stars. For three of their stars (namely, HD122563, HD140283, and HD175305), we have already presented their analysis in Section 3.1 and 3.2. We, therefore, do not include the analysis of these stars again in this section. EW measurements of the total 12 stars were adopted from different literature sources including Takeda et al. (2005); Morel et al. (2014); Heiter et al. (2015); Takeda & Tajitsu (2015); Liu et al. (2020). The average uncertainties of the interferometric $T_{\rm eff}$ estimated by Karovicova et al. (2020, 2021a,b) are within 1%. The authors derived their log g values by fitting Dartmouth isochrones (Dotter et al. 2008) to their interferometric $T_{\rm eff}$. They thus derive median uncertainties for log g of 0.09 for their metalpoor star sample, 0.05 for their dwarf sample, and 0.07 for the giants/subgiants sample.

We find that on average the differences in T_{eff} and log g between the reference values (Karovicova et al. 2020, 2021a,b) and those derived with LOTUS are within 26 K and 0.01 in NLTE, respectively. The NLTE parameters derived for all the stars agree within 1σ as compared to the reference values, except for the log g value of HD121370 with [Fe/H]=0.29, which deviated by 0.12 for LTE and 0.18 for NLTE. Heiter et al. (2015), however, reported a seismic log g for this star of 3.83 ± 0.02 dex, which agrees very with our NLTE result of 3.91 ± 0.06 within 1σ .

4. NLTE CORRECTIONS

The stars presented in Section 3 for testing LOTUS on benchmark stars with $T_{\rm eff}$ and $\log g$ derived using non-spectroscopic methods cover a limited range of metallicities (mostly with [Fe/H] > -1.0, as well as mainly dwarfs and However, NLTE stellar pasub-giant stars. rameter "corrections" (also known as NLTE effects, defined as $\Delta \text{NLTE} = \text{parameter}(\text{NLTE})$ - parameter(LTE)) have been shown in the literature to be more significant and important for evolved (giants and supergiant) metal-poor stars Lind et al. (2012); Ezzeddine et al. (2017). Thus, to be able to test our derived NLTE "corrections" on a larger, more metal-poor sample of giant stars, we derive LTE and NLTE stellar parameters for the *R*-process Alliance giant metalpoor star sample from Hansen et al. (2018), who derived the stellar parameters of 107 metal-poor stars ([Fe/H] < -1.0) selected based on their rprocess enhancement from several surveys. The EW measurements for FeI and FeII lines were adopted from Hansen et al. (2018), measured from their du Pont spectroscopic observations. We thus add the RPA sample stars to our test sample stars presented in Section 3, resulting in a significant sample covering a wide representative range of stellar parameters from $T_{\rm eff}$ =4000 to 6500 K, $\log g=0.0$ to 4.5, and [Fe/H]=-3.0to -0.5. The derived stellar parameters for the RPA stars, in LTE and NLTE, are also listed in Table 3.

We derive the NLTE corrections for [Fe/H] (denoted as Δ [Fe/H]) for the full sample of stars. We plot the results as a function of [Fe/H]_{LTE} in Figure 11. As expected, Δ [Fe/H] increases toward lower metallicities. Such effects have been shown in multiple previous studies as well (for e.g., Mashonkina et al. 2011; Lind et al. 2012; Bergemann et al. 2012; Amarsi et al. 2016; Ezzeddine et al. 2017). Ezzeddine et al. (2017) derived a linear relation between the NLTE correction for [Fe/H], Δ [Fe/H], and [Fe/H](LTE) from 20 ultra metal-poor stars with [Fe/H]< -4.0, such as:

$$\Delta [Fe/H] = -0.14 [Fe/H]_{LTE} - 0.15$$
 (8)

They found that their relationship can also be extended for metal-poor benchmark stars at -4.0 < [Fe/H] < -2.0. It is therefore useful to re-derive this equation using our full stellar sample analyzed uniformly using LOTUS, for comparison. Following Ezzeddine et al. (2017), we re-derive the relation between Δ [Fe/H] and [Fe/H](LTE) using our sample of stars . We re-derive the relation by (i) choosing only the stars with [Fe/H](LTE) < -0.5, and (ii) using the stars with [Fe/H](LTE) < -2.0. We thus derive Δ [Fe/H]=

$$\begin{cases} -0.06(\pm 0.01)[\text{Fe/H}]_{\text{LTE}} - 0.06(\pm 0.02), \\ \text{for } [\text{Fe/H}]_{\text{LTE}} < -0.5 \\ -0.16(\pm 0.02)[\text{Fe/H}]_{\text{LTE}} - 0.32(\pm 0.06), \\ \text{for } [\text{Fe/H}]_{\text{LTE}} < -2.0 \end{cases}$$
(9)

The two relations from these equations for Δ [Fe/H], as well as that derived in Ezzeddine et al. (2017), are shown in Figure 11, fit to our test sample stars from Section 3 as well as the RPA sample. We find that even though the three relations agree within uncertainties (colored bands in Figure 11), they can, however, yield slightly different NLTE corrections depending on the metallicity range for which they were fit. For e.g., our relation derived using stars with [Fe/H] < -2.0 underestimates the NLTE [Fe/H] correction as compared to Ezzeddine et al. (2017) by ~ 0.1 dex at [Fe/H] = -2.0, while using the relation derived with [Fe/H] <

Figure 11. NLTE corrections Δ [Fe/H] versus [Fe/H]_{LTE} determined for this work's star sample using LOTUS. Different markers indicate stars from different studies as indicated. The Yellow dashed line is a linear fit from Ezzeddine et al. (2017) for stars with [Fe/H]<-4.0. The Blue dot-dash line is our fit to the stars for [Fe/H]< -0.5, and the black dotted line is our fit to the stars with [Fe/H]< -2.0.

-0.5 can underestimate the NLTE correction up to 0.2 dex. This demonstrates that while these relations can provide useful first-order estimates of the NLTE corrections, a complete NLTE analysis (e.g., using LOTUS) is needed for precise estimation of the corrections, as the former can be dependent on the incomplete sample of stars or metallicity range.

Similarly, we derive Δ NLTE corrections for $T_{\rm eff}$, $\log g$, and $v_{\rm mic}$ for our sample stars. Again, we define the NLTE correction for $T_{\rm eff}$ as $\Delta T_{\rm eff} = T_{\rm eff}(\rm NLTE) - T_{\rm eff}(\rm LTE)$, for $\log g$ as $\Delta \log g = \log g(\rm NLTE) - \log g(\rm LTE)$, and for $v_{\rm mic}$ as $\Delta v_{\rm mic} = v_{\rm mic}(\rm NLTE) - v_{\rm mic}(\rm LTE)$. To best represent these corrections as a function of the other stellar parameters, we divide our sample into box plots grouped into different $T_{\rm eff}$ and $\log g$ bins, as a function of [Fe/H] on the x-axis. The results are shown in Figure 12.

In what follows we discuss the NLTE corrections we obtained for each parameter as a function of the other parameters, namely T_{eff} , $\log g$ and [Fe/H]. We also compare our result to the theoretical NLTE stellar parameter corrections derived by Lind et al. (2012). We note, however, that our comparisons are affected by the fact that our analyzed stars do not cover exactly the same parameter space as theirs, and that our stellar parameters have been derived by LOTUS simultaneously, i.e., taking into account their inter-dependencies, as explained in details in Section 2, whereas Lind et al. (2012)derived their Δ NLTE corrections for each parameter independently, by fixing all the others. As shown in Figure 12, we find that the $T_{\rm eff}$ derived in NLTE are generally higher than those in LTE for very metal-poor ([Fe/H] < -2.5) supergiants and giant stars (log q < 2.0), with NLTE corrections up to 100 K, whereas lower $T_{\rm eff}$ are obtained in NLTE as compared to LTE as $\log q$ and [Fe/H] increases. Lind et al. (2012), who derived their $T_{\rm eff}$ using both excitation and ionization equilibrium by fixing gravity and other stellar parameters in the process. Similarly, they

Figure 12. Box plots showing the NLTE corrections of stars considered in this work for stellar parameter T_{eff} , log g, [Fe/H], and v_{mic} as derived using LOTUS. Box plots are color-coded for two ranges of T_{eff} for each log grange, indicated at the top of each column. For intervals with only one star from our sample, boxes are replaced with dots and their error bars.

also restrict their Fe I line transitions to certain cutoffs, choosing only lines with EP> $3.5 \,\mathrm{eV}$. They found that their ionization ΔT_{eff} yielded lower LTE T_{eff} as compared to NLTE (see their Figure 5), whereas their excitation ΔT_{eff} yielded negligible positive corrections for $T_{\mathrm{eff}} < 4500$. More pronounced negative corrections were obtained for horizontal branches, supergiants, and extremely metal-poor stars, which are not covered in our sample stars. As noted above, our derived T_{eff} using LOTUS implement the contribution from both excitation and ionization equilibrium, by taking into account their T_{eff} -log ginter-dependencies. In that context, a thorough comparison of our ΔT_{eff} results to either excitation or ionization theoretical corrections derived by Lind et al. (2012) are not very useful, however, similar to their results we generally find that the NLTE corrections for the bulk of our stars are affected by less than 50 K (and up to 100 K) in the considered parameter range, which is within our derived uncertainties.

We also derive $\Delta \log q$ for our sample stars. As expected, the NLTE corrections for $\log q$ increase towards lower gravities, lower metallicities, and higher temperatures. On average, our corrections are $\sim +0.3 - 0.5$ for [Fe/H] < -2.0, $\sim +0.1 - 0.3$ for -2.0 < [Fe/H] < -1.0, for giants and supergiant stars with $\log q < 2.0$, with outliers reaching up to 1.0 dex. For stars with $\log q > 2.0$, the NLTE corrections can be up to ~ 0.3 depending on metallicities. These results broadly agree with the theoretical corrections derived in Lind et al. (2012). It can thus be concluded that LTE analyses can strongly underestimate the surface gravities of stars, particularly for warmer metal-poor giants, and should thus be reliably derived in NLTE for reliable consequent stellar population analyses.

Finally, the NLTE corrections for $v_{\rm mic}$ are generally small and are within 2.0 km s⁻¹ from those derived in LTE. The corrections are mainly positive for lower metallicity giants and supergiant stars, as in particular their Fe I lines are more strongly affected by NLTE, which leads to lower microturbulent velocities in LTE as compared to NLTE. Our results are generally consistent with the $\Delta v_{\rm mic}$ derived by Lind et al. (2012) from their theoretical models.

5. CAVEATS

We have so far described and demonstrated that LOTUS can be used as a reliable tool to derive NLTE and LTE atmospheric stellar parameters. There are, however, some caveats that warrant pointing out which can affect the results, particularly for stars occupying certain parameter spaces in our grids.

EW Interpolation—A key component of LOTUS is the interpolation module that expresses the EWs as a function of stellar parameters, using the generalized curve of growth (GCOG). As explained in Section 2.3.1, we conduct thorough tests to choose the best polynomial interpolator to calculate the GCOG for each spectral type. However, some polynomial models cannot reliably fit the GCOG to derive FeI and Fe II for certain lines at some parameter regions. For example, the Fe_I line at 3608.86 Å with $EP=1.01 \, eV$, shows a difference between theoretic computed NLTE EW directly using MULTI2.3 and LOTUS interpolated NLTE EW of 20 mÅ at $T_{\text{eff}} = 4000$ and [Fe/H] = -0.5, while the same value can be as low as 5 mÅ at the same $T_{\rm eff}$ with [Fe/H] = -3.5. Thus, for those models, the iron abundances derived from the interpolated polynomial models can deviate up to $0.5 \,\mathrm{dex}$ in abundances from those outputs directly from MULTI2.3 (i.e, non interpolated EWs). Such large offsets are due to the EWs of those lines not being sensitive to the variation of atmospheric stellar parameters, or being too small (close to zero) at most atmospheric stellar parameters. In other words, those lines are uncertain to determine iron abundances from at those parameter ranges. We emphasize that the number of those lines are limited and do not impact the statistical properties of interpolated performance for all lines we consider in the linelist, as shown in Figure 4. We do not drop these lines from our final linelist in Table 2 as the uncertainties can only affect a few Fe I lines in a limited part of the parameter space, which are then normally automatically excluded as outliers in the final optimization during sigma clipping. In future LOTUS updates, we plan to perform more detailed investigation into what parameter regions these lines occupy and how to improve interpolation of EW for these lines in the code.

Number of lines—The derived atmospheric stellar parameters using LOTUS can be affected by the number of FeI and FeII used in the optimization. In Figure 13, we show the effects of the uncertainties derived for each stellar parameter as a function of the number of FeI and FeII lines used in LOTUS. We find that the uncertainties on the derived parameters decrease as

Figure 13. Uncertainties of the derived atmospheric stellar parameters of the stars considered in this work versus the number of iron lines color-coded for LTE (blue) and NLTE (red), respectively. Empty circles correspond to FeI lines and crosses for FeII lines. Close-up inset plots show the inner close region where most of the FeII lines are.

a function of increasing the number of FeI and Fe II lines and are much more strongly affected by the number of Fe_I lines, $N_{\text{Fe}I}$ in particular. For $N_{\rm lines} > 140$, the uncertainty on $T_{\rm eff}$ and $\log q$ are less than 50 K and 0.1 dex, respectively, however can reach up to 200 K and 0.6 dex for $N_{\rm lines} < 50$. We thus recommend that users input more than at least 50 lines in LOTUS for reliable results. Additionally, as the number of Fe II lines detected in cool FGK stellar spectra are much smaller than the FeI lines (on the order of 10-30, depending on the [Fe/H] of the star), we moreover recommend that users try to maximize the number of Fe II lines they can measure the EW for in their stars, as that will increase the precision of the parameter determination. In future work we plan to test LOTUS on lower resolution spectroscopic observations, as well as simultaneous high-resolution data for the same stars for comparison, to accurately quantify the effects of the spectral resolution on the results derived by LOTUS.

K-type stars—The atmospheric stellar parameters, particularly $\log g$, derived for K-type stars using LOTUS can have larger uncertainties than other spectra types. Tsantaki et al. (2019) noted that $\log g$ determined for K-type stars using ionization balance between Fe I and Fe II lines might be underestimated depending on the choice of Fe II lines in the optimization. They argued that the derived $\log g$ can strongly depend on the choice of Fe II lines and thus must be thoroughly selected. We investigated this effect on our GES-K2 sample, in which most of our stars are K-type giants or sub-giants. We find that both our NLTE and LTE results can overestimate the surface gravity by up to 0.1 to 0.13 dex as compared to asteroseismic values, depending on the selection of Fe II lines.

3D models—Since our atmospheric stellar models are limited to 1D, inferred iron abundances might suffer from 3D effects including the effects of atmospheric inhomogeneities and horizontal radiation transfer, as well as the effect of differences in the mean temperature stratification Amarsi et al. (2016). These can underestimate the abundances inferred from Fe1 and FeII roughly by up to 0.1 dex in 1D, NLTE as compared with Fe abundances derived using 3D, NLTE. Such effects are more strongly pronounced for Fe II lines than Fe I as explained in Amarsi et al. (2016). We find that adding a 0.1 dex correction for our 1D, NLTE [Fe/H]for HD122563 brings it closer to the 3D, NLTE [Fe/H] derived in (Amarsi et al. 2016). On the other hand, a 0.22 dex difference to Amarsi et al. (2016) is still present when adding such correction to the [Fe/H] for HD140283. This can be due to stellar parameter differences between both studies, as well as different adopted Fe_I and FeII linelists. Nevertheless, we note that a 0.1 3D correction can be smaller than the NLTE corrections obtained for [Fe/H], especially for low metallicity stars, which can reach up to 0.3dex for [Fe/H] = -3.0.

6. SUMMARY & CONCLUSIONS

We present the open-source code, LOTUS, developed to automatically derive fast and precise atmospheric stellar parameters ($T_{\rm eff}$, log g, [Fe/H] and $v_{\rm mic}$) of stars in 1D, LTE, and 1D, NLTE using Fe I and Fe II equivalent width measurement from stellar spectra as input.

LOTUS implements a generalized curve of growth (GCOG) method to derive abundances from a pre-computed grid of theoretical EWs in a high-resolution and dense spectral parameter space. The GCOG takes into account the EW dependencies of every Fe I and Fe II line on the corresponding atmospheric stellar parameters. A global differential evolution optimization algorithm, optimized to the spectral type of the star, is then used to derive the fundamental stellar parameters. In addition, LOTUS can be used to estimate precise uncertainties for each stellar parameter using a well-tested Markov Chain Monte Carlo (MCMC) algorithm.

We tested our code on several benchmark stars and stellar samples with reliable nonspectroscopic (asteroseismic, photometric, and interferometric) measurements for a wide range of parameter space typical of FGK stars. We find that our NLTE-derived stellar parameters for $T_{\rm eff}$ and $\log g$ using LOTUS are within 30 K and 0.2 dex for benchmark stars including the metal-poor standard stars, HD140283 and HD122563, as well as Arcturus. We also test LOTUS on a large sample of Gaia-ESO (GES) dwarf stars from Hawkins et al. (2016) and GES-K2 with asteroseismic gravities from K2, as well as stars with CHARA interferometric observations. Similarly, we find that LOTUS performs very well in reproducing the non-spectroscopic T_{eff} and $\log g$ within the mean of sample as < 20 K and < 0.1 dex in NLTE, and to within $\sim 70 \,\mathrm{K}$ and $\sim 0.2 \,\mathrm{dex}$ in LTE.

We also apply LOTUS on a large sample of metal-poor stars from the R-Process Alliance (RPA, Hansen et al. 2018). We use the RPA sample as well as the test sample stars to derive NLTE stellar parameter corrections for our stars and review the Δ [Fe/H] versus [Fe/H](LTE) relation derived in Ezzeddine et al. (2017). We find that our NLTE corrections agree with theoretical corrections investigated by Lind et al. (2012).

We test LOTUS thoroughly for performance for different spectral types and parameter spaces. We find that despite some caveats discussed in Section 5, LOTUS can overall be reliably used to provide fast and accurate NLTE derivation for a wide range of stellar parameters, especially metal-poor giants which can be strongly affected by deviations from LTE. We thus strongly recommend that the community use it to apply for the spectroscopic analyses of stars and stellar populations.

We provide open community access to LOTUS, as well as the pre-computed interpolated LTE and NLTE EW grids available on Github \bigcirc , with documentation and working examples on Readthedocs \blacksquare .

ACKNOWLEDGMENTS

We thank the anonymous referee for their useful comments that improved the manuscript. R.E. acknowledges support from JINA-CEE (Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements), funded by the NSF under Grant No. PHY-1430152. The authors acknowledge the University of Florida Research Computing for providing computational resources and support that have contributed to the research results reported in this publication. URL: UFRC.

Software: astropy (Astropy Collaboration et al. 2013, 2018), numpy (van der Walt et al. 2011; Harris et al. 2020), pandas (pandas development team 2020), scikit-learn (Buitinck et al. 2013), scipy (Virtanen et al. 2020), sympy (Meurer et al. 2017), matplotlib (Hunter 2007), h5py (Collette 2013), PyMC3 (Salvatier et al. 2016), theano (Team et al. 2016), corner (Foreman-Mackey 2016), numdifftools (Brodtkorb & D'Errico 2015)

LI ET AL.

APPENDIX

rus (see	Section 2	2.1.4 for determines the second secon	etails)
Species	$\lambda(\mathring{A})$	$E_{low}(ev)$	loggf
Feı	3440.61	0.00	-0.67
Fe I	3440.99	0.05	-0.96
Feı	3447.28	2.20	-1.02
Feı	3450.33	2.22	-0.90
Feı	3451.91	2.22	-1.00
Feı	3476.70	0.12	-1.51
Feı	3490.57	0.05	-1.10
Feı	3497.84	0.11	-1.55
Feı	3540.12	2.87	-0.71
Feı	3565.38	0.96	-0.13
Feı	3608.86	1.01	-0.10
Feı	3618.77	0.99	-0.00
Feı	3647.84	0.92	-0.19
Feı	3689.46	2.94	-0.17
Feı	3719.93	0.00	-0.43
Feı	3727.62	0.96	-0.63
Feı	3742.62	2.94	-0.81
Feı	3758.23	0.96	-0.03
Feı	3763.79	0.99	-0.24
Feı	3765.54	3.24	0.48
Feı	3786.68	1.01	-2.22
Feı	3787.88	1.01	-0.86
Feı	3805.34	3.30	0.31
Feı	3808.73	2.56	-1.17
Feı	3815.84	1.48	0.23
Feı	3820.43	0.86	0.12
Feı	3825.88	0.91	-0.04
Feı	3827.82	1.56	0.06
Feı	3840.44	0.99	-0.51
Feı	3841.05	1.61	-0.04
Feı	3849.97	1.01	-0.87
Feı	3856.37	0.05	-1.29

 Table 2.
 FeI and FeII linelist selected for

А.	LINELIST	OF Fel	i AND	Fe II IN	LOTUS	
elis	t selected for				Table 2	(continued)

Species	$\lambda(A)$	$E_{low}(ev)$	loggf
Feı	3865.52	1.01	-0.98
Feı	3878.02	0.96	-0.91
Feı	3895.66	0.11	-1.67
Feı	3899.71	0.09	-1.53
Feı	3902.95	1.56	-0.47
Feı	3920.26	0.12	-1.75
Feı	3922.91	0.05	-1.65
Feı	3949.95	2.18	-1.25
Feı	3977.74	2.20	-1.12
Feı	4005.24	1.56	-0.61
Feı	4045.81	1.49	0.28
Feı	4058.22	3.21	-1.18
Feı	4063.59	1.56	0.06
Feı	4067.98	3.21	-0.53
Feı	4070.77	3.24	-0.87
Feı	4071.74	1.61	-0.02
Feı	4114.44	2.83	-1.30
Feı	4132.06	1.61	-0.68
Feı	4134.68	2.83	-0.65
Feı	4143.87	1.56	-0.51
Feı	4147.67	1.49	-2.10
Feı	4150.25	3.43	-1.19
Feı	4154.50	2.83	-0.69
Fe I	4156.80	2.83	-0.81
Fe I	4157.78	3.42	-0.40
Fe I	4158.79	3.43	-0.70
Fe I	4174.91	0.91	-2.97
Fe I	4175.64	2.85	-0.83
Fe I	4181.76	2.83	-0.37
Fe I	4182.38	3.02	-1.18
Fe I	4184.89	2.83	-0.87
Fe I	4187.04	2.45	-0.56
Feı	4187.80	2.42	-0.55
Feı	4191.43	2.47	-0.67

Table 2continued

 Table 2 (continued)

 Table 2 (continued)

Species	$\lambda(A)$	$E_{low}(ev)$	loggf
Feı	4195.33	3.33	-0.49
Feı	4199.10	3.05	0.16
Feı	4202.03	1.49	-0.71
Feı	4216.18	0.00	-3.36
Feı	4217.55	3.43	-0.48
Feı	4222.21	2.45	-0.97
Feı	4227.43	3.33	0.27
Feı	4233.60	2.48	-0.60
Feı	4238.81	3.40	-0.23
Feı	4250.12	2.47	-0.41
Feı	4250.79	1.56	-0.71
Feı	4260.47	2.40	0.08
Feı	4271.15	2.45	-0.35
Feı	4271.76	1.49	-0.16
Feı	4282.40	2.18	-0.78
Fеı	4325.76	1.61	0.01
Fei	4352.73	2.22	-1.29
Feı	4375.93	0.00	-3.03
Feı	4388.41	3.60	-0.68
Feı	4404.75	1.56	-0.14
Feı	4415.12	1.61	-0.62
Fei	4427.31	0.05	-3.04
Feı	4430.61	2.22	-1.66
Feı	4432.57	3.57	-1.58
Feı	4442.34	2.20	-1.25
Feı	4443.19	2.86	-1.04
Feı	4447.72	2.22	-1.36
Feı	4461.65	0.09	-3.21
Feı	4466.55	2.83	-0.60
Feı	4484.22	3.60	-0.64
Fei	4489.74	0.12	-3.97
Feı	4494.56	2.20	-1.14
Feı	4514.18	3.05	-1.96
Feı	4531.15	1.48	-2.16
Feı	4547.85	3.55	-0.82
Fei	4574.22	3.21	-2.35
Feı	4592.65	1.56	-2.45
Feı	4595.36	3.30	-1.76

Species	$\lambda(A)$	$E_{low}(ev)$	loggf
Feı	4602.00	1.61	-3.15
Feı	4602.94	1.49	-2.22
Feı	4607.65	3.27	-1.33
Feı	4619.29	3.60	-1.06
Feı	4630.12	2.28	-2.58
Feı	4637.50	3.28	-1.29
Feı	4643.46	3.65	-1.15
Feı	4647.43	2.95	-1.35
Feı	4661.97	2.99	-2.50
Feı	4668.13	3.27	-1.08
Feı	4704.95	3.69	-1.32
Feı	4733.59	1.49	-2.99
Feı	4736.77	3.21	-0.67
Feı	4786.81	3.02	-1.61
Feı	4787.83	3.00	-2.62
Feı	4788.76	3.24	-1.763
Feı	4789.65	3.55	-0.96
Feı	4793.96	3.05	-3.43
Feı	4794.35	2.42	-3.95
Feı	4800.65	4.14	-1.03
Feı	4802.88	3.64	-1.51
Feı	4807.71	3.37	-2.15
Feı	4808.15	3.25	-2.69
Feı	4869.46	3.55	-2.42
Feı	4871.32	2.87	-0.34
Feı	4872.14	2.88	-0.57
Feı	4873.75	3.30	-2.96
Feı	4875.88	3.33	-1.90
Feı	4877.60	3.00	-3.05
Feı	4882.14	3.42	-1.48
Feı	4885.43	3.88	-0.97
Feı	4890.76	2.88	-0.38
Feı	4891.49	2.85	-0.11
Feı	4896.44	3.88	-1.89
Feı	4903.31	2.88	-0.89
Feı	4905.13	3.93	-1.73
Feı	4907.73	3.43	-1.70
Feı	4910.02	3.40	-1.28

 Table 2 continued

LI ET AL.

 Table 2 (continued)

Species	$\lambda(\AA)$	$E_{low}(ev)$	loggf
Feı	4911.78	3.93	-1.75
Feı	4918.99	2.86	-0.34
Feı	4920.50	2.83	0.07
Feı	4924.77	2.28	-2.11
Feı	4938.81	2.88	-1.08
Feı	4939.69	0.86	-3.34
Feı	4946.39	3.37	-1.11
Feı	4950.11	3.42	-1.49
Feı	4962.57	4.18	-1.18
Feı	4966.09	3.33	-0.79
Feı	4969.92	4.22	-0.71
Feı	4985.55	2.87	-1.33
Feı	4992.79	4.26	-2.35
Feı	4994.13	0.92	-3.08
Feı	4999.11	4.19	-1.64
Feı	5001.86	3.88	-0.01
Feı	5002.79	3.40	-1.46
Feı	5005.71	3.88	-0.12
Feı	5006.12	2.83	-0.61
Fеı	5012.69	4.28	-1.69
Fеı	5014.94	3.94	-0.18
Fеı	5022.24	3.98	-0.33
Fеı	5023.19	4.28	-1.50
Fеı	5028.13	3.57	-1.02
Fеı	5039.25	3.37	-1.52
Fеı	5044.21	2.85	-2.02
Feı	5048.44	3.96	-1.00
Fei	5049.82	2.28	-1.35
Fеı	5051.63	0.92	-2.80
Fei	5054.64	3.64	-1.92
Fei	5058.50	3.64	-2.83
Fеı	5060.08	0.00	-5.43
Feı	5068.77	2.94	-1.04
Feı	5079.22	2.20	-2.07
Feı	5079.74	0.99	-3.22
Feı	5083.34	0.96	-2.96
Feı	5088.15	4.15	-1.68
Feı	5107.45	0.99	-3.09

Table 2 (continued)				
Species	$\lambda(A)$	$E_{low}(ev)$	loggf	
Feı	5107.64	1.56	-2.36	
Feı	5109.65	4.30	-0.98	
Feı	5115.78	3.57	-2.64	
Fe I	5123.72	1.01	-3.07	
Fe I	5127.36	0.92	-3.31	
Fe I	5131.47	2.22	-2.52	
Fe I	5133.69	4.18	0.36	
Fe I	5141.74	2.42	-2.24	
Fe I	5150.84	0.99	-3.04	
Fe I	5151.91	1.01	-3.32	
Fe I	5166.28	0.00	-4.20	
Fe I	5171.60	1.49	-1.79	
Fe I	5191.45	3.04	-0.55	
Fei	5192.34	3.00	-0.42	
Fei	5194.94	1.56	-2.09	
Fe I	5197.94	4.30	-1.54	
Fei	5198.71	2.22	-2.13	
Fei	5202.34	2.18	-1.84	
Fe I	5215.18	3.27	-0.86	
Fe I	5216.27	1.61	-2.15	
Fe I	5217.39	3.21	-1.07	
Fe I	5223.18	3.63	-1.78	
Fei	5225.53	0.11	-4.79	
Fe I	5228.38	4.22	-1.19	
Fe I	5232.94	2.94	-0.06	
Fe I	5242.49	3.63	-0.97	
Fe I	5243.78	4.26	-1.05	
Fe I	5247.05	0.09	-4.95	
Fe I	5250.21	0.12	-4.93	
Fei	5250.65	2.20	-2.18	
Fe I	5253.02	2.28	-3.84	
Fe I	5253.46	3.28	-1.58	
Feı	5262.88	3.25	-2.56	
Feı	5263.31	3.27	-0.87	
Feı	5266.56	3.00	-0.39	
Feı	5281.79	3.04	-0.83	
Feı	5283.62	3.24	-0.52	
Fe I	5285.13	4.43	-1.66	

 Table 2 continued

 Table 2 continued

=

 Table 2 (continued)

 Table 2 (continued)

Species	$\lambda(A)$	$E_{low}(ev)$	loggf
Feı	5288.52	3.69	-1.49
Feı	5293.96	4.14	-1.77
Feı	5294.55	3.64	-2.76
Feı	5295.31	4.42	-1.59
Feı	5300.40	4.59	-1.65
Feı	5302.30	3.28	-0.74
Feı	5307.36	1.61	-2.99
Feı	5321.11	4.43	-1.09
Feı	5322.04	2.28	-2.80
Feı	5324.18	3.21	-0.11
Feı	5332.90	1.56	-2.78
Feı	5339.93	3.27	-0.63
Feı	5341.02	1.61	-1.95
Feı	5364.87	4.45	0.23
Feı	5365.40	3.57	-1.02
Feı	5367.47	4.42	0.44
Fei	5369.96	4.37	0.54
Feı	5371.49	0.96	-1.64
Feı	5373.71	4.47	-0.71
Feı	5379.57	3.69	-1.42
Feı	5383.37	4.31	0.65
Feı	5386.33	4.15	-1.67
Feı	5389.48	4.42	-0.41
Feı	5395.22	4.45	-2.07
Feı	5397.13	0.92	-1.99
Fei	5398.28	4.45	-0.63
Fei	5405.77	0.99	-1.85
Feı	5410.91	4.47	0.4
Feı	5412.78	4.43	-1.72
Feı	5415.20	4.39	0.64
Feı	5417.03	4.42	-1.58
Feı	5424.07	4.32	0.52
Feı	5429.70	0.96	-1.88
Feı	5434.52	1.01	-2.12
Feı	5436.59	2.28	-2.96
Feı	5441.34	4.31	-1.63
Feı	5445.04	4.39	-0.02
Feı	5461.55	4.45	-1.8

Species	$\lambda(\mathring{A})$	$E_{low}(ev)$	loggf
Feı	5464.28	4.14	-1.40
Feı	5466.40	4.37	-0.63
Fe I	5470.09	4.45	-1.71
Fe I	5473.90	4.15	-0.72
Fеı	5483.10	4.15	-1.39
Feı	5487.15	4.42	-1.43
Feı	5491.83	4.19	-2.19
Feı	5493.50	4.10	-1.48
Feı	5494.46	4.08	-1.99
Feı	5497.52	1.01	-2.85
Feı	5501.47	0.96	-3.05
Fe I	5506.78	0.99	-2.80
Fe I	5522.45	4.21	-1.45
Fe I	5525.54	4.23	-1.08
Fe I	5536.58	2.83	-3.71
Fe I	5539.28	3.64	-2.56
Fe I	5543.94	4.22	-1.04
Fe I	5546.51	4.37	-1.21
Fe I	5552.69	4.95	-1.89
Fe I	5554.90	4.55	-0.27
Fe I	5560.21	4.43	-1.09
Fe I	5563.60	4.19	-0.75
Fe I	5569.62	3.42	-0.52
Fe I	5576.09	3.43	-0.90
Fe I	5586.76	3.37	-0.11
Fe I	5587.57	4.14	-1.75
Fe I	5618.63	4.21	-1.25
Fei	5619.60	4.39	-1.60
Fe I	5624.02	4.39	-1.38
Fe I	5624.54	3.42	-0.76
Fe I	5633.95	4.99	-0.23
Feı	5635.82	4.26	-1.79
Feı	5636.70	3.64	-2.51
Feı	5638.26	4.22	-0.72
Feı	5641.43	4.26	-1.08
Feı	5649.99	5.10	-0.82
Feı	5651.47	4.47	-1.90
Feı	5652.32	4.26	-1.85

 Table 2 continued

LI ET AL.

 Table 2 (continued)

Species	$\lambda(\AA)$	$E_{low}(ev)$	loggf
Feı	5653.87	4.39	-1.54
Feı	5655.18	5.06	-0.60
Feı	5661.35	4.28	-1.76
Feı	5662.52	4.18	-0.41
Feı	5667.52	4.18	-1.58
Feı	5679.02	4.65	-0.82
Feı	5686.53	4.55	-0.45
Feı	5691.50	4.30	-1.45
Feı	5696.09	4.55	-1.72
Feı	5698.02	3.64	-2.58
Feı	5701.54	2.56	-2.22
Feı	5705.46	4.30	-1.35
Feı	5731.76	4.26	-1.20
Feı	5732.30	4.99	-1.46
Feı	5741.85	4.26	-1.67
Feı	5742.96	4.18	-2.41
Fеı	5753.12	4.26	-0.62
Feı	5760.34	3.64	-2.39
Fеı	5775.08	4.22	-1.08
Fеı	5778.45	2.59	-3.43
Fеı	5784.66	3.40	-2.55
Fеı	5816.37	4.55	-0.60
Fеı	5835.10	4.26	-2.27
Fеı	5837.70	4.29	-2.24
Fеı	5838.37	3.94	-2.24
Fеı	5849.68	3.69	-2.89
Fei	5853.15	1.49	-5.18
Fei	5855.08	4.61	-1.48
Fei	5858.78	4.22	-2.16
Fei	5883.82	3.96	-1.26
Fei	5902.47	4.59	-1.71
Fei	5905.67	4.65	-0.69
Feı	5916.25	2.45	-2.99
Feı	5927.79	4.65	-0.99
Feı	5929.68	4.55	-1.31
Feı	5930.18	4.65	-0.23
Feı	5934.65	3.93	-1.07
Feı	5940.99	4.18	-2.05

Species	$\lambda(A)$	$E_{low}(ev)$	loggf
Feı	5956.69	0.86	-4.60
Feı	6003.01	3.88	-1.10
Feı	6008.56	3.88	-0.98
Feı	6012.21	2.22	-4.04
Feı	6024.06	4.55	-0.12
Fe I	6027.05	4.08	-1.09
Fe I	6056.00	4.73	-0.32
Fe I	6065.48	2.61	-1.53
Fe I	6079.01	4.65	-1.02
Fe I	6082.71	2.22	-3.58
Fe I	6093.64	4.61	-1.40
Feı	6094.37	4.65	-1.84
Feı	6096.66	3.98	-1.83
Feı	6120.25	0.91	-5.97
Feı	6127.91	4.14	-1.40
Feı	6136.61	2.45	-1.40
Fe I	6136.99	2.20	-2.95
Feı	6137.69	2.59	-1.40
Feı	6151.62	2.18	-3.30
Feı	6165.36	4.14	-1.47
Feı	6173.33	2.22	-2.88
Fe I	6187.99	3.94	-1.62
Fe I	6191.56	2.43	-1.42
Fe I	6200.31	2.61	-2.43
Fe I	6213.43	2.22	-2.48
Fe I	6219.28	2.20	-2.43
Fe I	6226.73	3.88	-2.12
Fe I	6229.23	2.85	-2.81
Fe I	6230.72	2.56	-1.28
Feı	6232.64	3.65	-1.24
Feı	6240.65	2.22	-3.17
Feı	6246.32	3.60	-0.77
Feı	6252.56	2.40	-1.69
Feı	6265.13	2.18	-2.55
Feı	6270.22	2.86	-2.47
Feı	6271.28	3.33	-2.70
Feı	6297.79	2.22	-2.74
Fеı	6301.50	3.65	-0.71

 Table 2 (continued)

 Table 2 continued

 Table 2 continued

=

NLTE Stellar Parameters with <code>Lotus</code>

 Table 2 (continued)

 Table 2 (continued)

Species	$\lambda(A)$	$E_{low}(ev)$	loggf
Feı	6315.81	4.08	-1.63
Feı	6322.69	2.59	-2.43
Feı	6330.85	4.73	-1.64
Feı	6335.33	2.20	-2.18
Feı	6336.82	3.69	-0.85
Feı	6338.88	4.80	-0.96
Feı	6344.15	2.43	-2.92
Feı	6355.03	2.84	-2.29
Feı	6364.36	4.80	-1.33
Feı	6380.74	4.19	-1.38
Feı	6393.60	2.43	-1.58
Feı	6400.32	0.91	-4.32
Feı	6408.02	3.69	-0.99
Feı	6411.65	3.65	-0.59
Feı	6421.35	2.28	-2.03
Feı	6430.85	2.18	-2.01
Feı	6475.62	2.56	-2.94
Feı	6481.87	2.28	-2.98
Feı	6494.98	2.40	-1.27
Feı	6496.47	4.80	-0.53
Feı	6498.94	0.96	-4.69
Feı	6518.37	2.83	-2.44
Feı	6533.93	4.56	-1.36
Feı	6546.24	2.76	-1.54
Feı	6569.21	4.73	-0.38
Feı	6574.23	0.99	-5.00
Feı	6592.91	2.73	-1.47
Feı	6593.87	2.43	-2.42
Feı	6597.56	4.80	-0.97
Feı	6609.11	2.56	-2.69
Feı	6627.54	4.55	-1.59
Feı	6648.08	1.01	-5.92
Feı	6677.99	2.69	-1.42
Feı	6699.14	4.59	-2.10
Feı	6703.57	2.76	-3.06
Feı	6713.74	4.80	-1.50
Feı	6733.15	4.64	-1.15
Feı	6739.52	1.56	-4.79

) (4)	D ()	1 0
Species	$\lambda(A)$	$E_{low}(ev)$	loggf
Feı	6750.15	2.42	-2.62
Feı	6752.71	4.64	-1.20
Fe I	6786.86	4.19	-1.97
Feı	6804.27	4.58	-1.81
Feı	6806.84	2.73	-2.13
Fe I	6810.26	4.61	-0.99
Feı	6820.37	4.64	-1.22
Feı	6843.66	4.55	-0.73
Feı	6855.16	4.56	-0.49
Feı	6858.15	4.61	-0.90
Feı	6978.85	2.48	-2.50
Feı	7495.07	4.22	-0.10
Feı	7511.02	4.18	0.12
Feı	7568.90	4.28	-0.88
Feı	8220.38	4.32	0.30
FeII	4173.45	2.58	-2.38
FeII	4178.86	2.58	-2.51
Fe II	4233.16	2.58	-2.02
Fe II	4303.17	2.70	-2.52
FeII	4385.38	2.78	-2.64
FeII	4416.82	2.78	-2.57
FeII	4491.40	2.86	-2.71
FeII	4508.28	2.86	-2.42
FeII	4515.34	2.84	-2.60
FeII	4522.63	2.84	-2.29
FeII	4549.47	2.83	-1.92
FeII	4555.89	2.83	-2.40
FeII	4576.33	2.84	-2.95
FeII	4583.83	2.81	-1.94
FeII	4620.51	2.83	-3.21
FeII	4923.93	2.89	-1.26
Fe II	4993.35	2.81	-3.68
FeII	5197.57	3.23	-2.22
FeII	5234.63	3.22	-2.18
Fe II	5256.93	2.89	-4.18
Fe II	5264.80	3.23	-3.13
Fe II	5276.00	3.20	-2.01
Fe II	5316.61	3.15	-1.87

 Table 2 continued

 $\lambda(A)$ Species $E_{low}(ev)$ loggf 5316.78 -2.74FeII 3.22 ${\rm Fe\,{\scriptstyle II}}$ 5325.553.22-3.16 ${\rm Fe\,{\scriptstyle II}}$ 5414.073.22-3.58 ${\rm Fe\,{\scriptstyle II}}$ 5425.253.20-3.225534.84-2.80 ${\rm Fe\,{\scriptstyle II}}$ 3.25 ${\rm Fe\,{\scriptstyle II}}$ 5991.373.15-3.65 ${\rm Fe\,{\scriptstyle II}}$ 6084.103.20-3.886113.32-4.23 ${\rm Fe\,{\scriptstyle II}}$ 3.22

Fe II	6149.24	3.89	-2.84
FeII	6247.56	3.89	-2.44
${ m Fe{\scriptstyle II}}$	6369.46	2.89	-4.11
FeII	6432.68	2.89	-3.57
FeII	6456.38	3.90	-2.19

B. DERIVED STELLAR PARAMETERS OF THE TARGET STARS IN THIS WORK

 $\mathbf{Table} \ \mathbf{2} \ (\textit{continued})$

Stars
Target
of the
Parameters
Atmospheric
Stellar
Derived
e 3.
Tabl

NFeI
-1)
.03 72
.14 96
0.02 70
GES Meta
.09 33
.07 35
0.2 45
.09 44
.08 37
Interferome
.05 90
0.04 68
.03 96
.04 97
.05 49
0.03 88
).18 63
.01 †
0.03 86
0.07 34
0.12 79
0.08 76
GES-K
0.02 138
0.01 136
0.03 134
0.01 151
0.02 156
0.01 146

NLTE Stellar Parameters with <code>Lotus</code>

 Table 3
 continued

(continued)	
Table 3	

$N_{\rm FeII}$ $N_{\rm FeI}$ $\chi_{\rm FeI}$ cutoff	(ev)	123 15 0.0	167 15 0.0	151 17 0.0		153 17 0.0	153 17 0.0 132 15 0.0	153 17 0.0 132 15 0.0 125 11 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 119 14 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 119 14 0.0 153 17 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 119 14 0.0 153 17 0.0 153 17 0.0 153 17 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 119 14 0.0 153 17 0.0 145 16 0.0 153 17 0.0 158 13 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 119 14 0.0 153 17 0.0 153 17 0.0 153 17 0.0 153 13 0.0 156 13 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 119 14 0.0 153 17 0.0 153 17 0.0 153 17 0.0 158 13 0.0 136 15 0.0 136 15 0.0 133 14 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 153 17 0.0 153 17 0.0 153 17 0.0 153 17 0.0 153 17 0.0 158 13 0.0 136 15 0.0 143 14 0.0 132 14 0.0 133 14 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 153 17 0.0 145 16 0.0 153 17 0.0 153 17 0.0 154 16 0.0 158 13 0.0 132 14 0.0 132 14 0.0 132 14 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 153 17 0.0 153 17 0.0 153 17 0.0 145 16 0.0 153 17 0.0 158 13 0.0 130 14 0.0 132 14 0.0 133 14 0.0 130 14 0.0 131 14 0.0 132 14 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 119 14 0.0 153 17 0.0 153 17 0.0 153 17 0.0 153 17 0.0 158 13 0.0 136 15 0.0 132 14 0.0 133 14 0.0 133 14 0.0 130 14 0.0 130 14 0.0 150 16 0.0 161 13 0.0 150 16 0.0	153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 146 15 0.0 153 17 0.0 153 17 0.0 153 17 0.0 153 17 0.0 154 16 0.0 135 14 0.0 131 14 0.0 150 14 0.0 150 16 0.0 150 16 0.0 150 16 0.0 150 16 0.0									153 17 0.0 132 15 0.0 125 11 0.0 94 15 0.0 1146 15 0.0 119 14 0.0 153 17 0.0 158 13 0.0 136 15 0.0 136 15 0.0 1316 14 0.0 132 14 0.0 132 14 0.0 132 14 0.0 133 16 0.0 133 16 0.0 146 17 0.0 148 16 0.0 148 16 0.0 142 15 0.0 142 15 0.0 142 15 0.0 142 15 0.0 167 14 0.0			
$v_{ m mic}$ $N_{ m Fe}$	$(\mathrm{km}~\mathrm{s}^{-1})$	1.42 ± 0.02 125	1.07 ± 0.01 167	1.27 ± 0.01 151	1.39 ± 0.01 155	1000	1.21±0.02 132	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.21\pm0.02 1.52\\ 1.61\pm0.01 125\\ 1.5\pm0.02 94\\ 1.26\pm0.01 146\\ 1.25\pm0.03 116\\ 1.49\pm0.01 156\\ 1.49\pm0.01 156\\ 1.25\pm0.01 146\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.21\pm0.02 \\ 1.51\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 0.42 \\ 1.25\pm0.01 \\ 1.46 \\ 1.25\pm0.01 \\ 1.47 \\ 1.25\pm0.01 \\ 1.61\pm0.02 \\ 1.16\pm0.02 \\ 1.36\pm0.01 \\ 1.32 \\ 1.11\pm0.02 \\ 1.32\pm0.01 \\ 1.32 \\ 1.33\pm0.01 \\ 1.50 \\ 1.35\pm0.01 \\ 1.50 \\ 1.50 \\ 1.35\pm0.01 \\ 1.50 $	$\begin{array}{c} 1.21\pm0.02 \\ 1.51\pm0.02 \\ 1.61\pm0.01 \\ 1.55\pm0.03 \\ 1.26\pm0.01 \\ 1.26\pm0.01 \\ 1.25\pm0.01 \\ 1.49\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.33\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.01 \\ 1.55 \\ 1.35\pm0.01 \\ 1.55 \\ 1.35\pm0.01 \\ 1.55 \\ 1.35\pm0.02 \\ 1.55 \\ 1.29\pm0.02 \\ 1.55 \\ 1.20\pm0.02 \\ 1.2$	$\begin{array}{c} 1.21\pm0.02 \\ 1.21\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.26\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.02 \\ $	$\begin{array}{c} 1.21\pm0.02 1.52\\ 1.61\pm0.01 125\\ 1.61\pm0.01 126\\ 1.26\pm0.01 146\\ 1.25\pm0.01 153\\ 1.42\pm0.01 158\\ 1.25\pm0.01 158\\ 1.25\pm0.01 158\\ 1.6\pm0.02 136\\ 1.04\pm0.03 148\\ 1.32\pm0.01 136\\ 1.32\pm0.01 136\\ 1.33\pm0.01 156\\ 1.33\pm0.01 156\\ 1.35\pm0.02 116\\ 1.22\pm0.02 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\ 146\\$	$\begin{array}{c} 1.21\pm0.02 \\ 1.5\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.26\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.35\pm0.02 \\ 1.35\pm0.02 \\ 1.36\pm0.02 \\ 1.36\pm0.02 \\ 1.56\pm0.02 \\ 1$	$\begin{array}{c} 1.21\pm0.02 \\ 1.5\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.26\pm0.01 \\ 1.25\pm0.03 \\ 1.46 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.35\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.36\pm0.02 \\ 1.31\pm0.02 \\ 1.31\pm0.01 \\ 1.50 \\ 1.31\pm0.02 \\ 1.31\pm0.01 \\ 1.50 \\ 1.31\pm0.01 \\ 1.50 \\ 1.31\pm0.02 \\ 1.50 \\ 1.31\pm0.01 \\ 1.50 \\ 1.31\pm0.01 \\ 1.50 \\ 1.22\pm0.02 \\ 1.50 \\ 1.22\pm0.02 \\ 1.50 \\ 1.17\pm0.01 \\ 1.50 \\ 1.11\pm0.02 \\ 1.50 \\$	$\begin{array}{c} 1.21\pm0.02 \\ 1.5\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.26\pm0.01 \\ 1.26\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.35\pm0.01 \\ 1$	$\begin{array}{c} 1.21\pm0.02 \\ 1.21\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.26\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.27\pm0.01 \\ 1.58 \\ 1.16\pm0.02 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.35\pm0.02 \\ 1.33\pm0.01 \\ 1.35\pm0.02 \\ 1.36\pm0.02 \\ 1.36\pm0.02 \\ 1.38\pm0.02 \\ 1.38\pm$	$\begin{array}{c} 1.21\pm0.02 \\ 1.5\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.26\pm0.01 \\ 1.25\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.02 \\ 1.32\pm0.02 \\ 1.31\pm0.02 \\ 1.31\pm0.01 \\ 1.45 \\ 1.17\pm0.01 \\ 1.45 \\ 1.17\pm0.01 \\ 1.45 \\ 1.17\pm0.03 \\ 106 \\ 1.115 \\ 1.11\pm0.02 \\ 1.115 \\ 1.11\pm0.02 \\ 1.115 \\ 1.11\pm0.02 \\ 1.115 \\ 1.11\pm0.02 \\ 1.115 \\ 1.11$	$\begin{array}{c} 1.21\pm0.02 \\ 1.5\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.26\pm0.01 \\ 1.26\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.27\pm0.01 \\ 1.58 \\ 1.04\pm0.02 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.01 \\ 1.56 \\ 1.33\pm0.01 \\ 1.56 \\ 1.32\pm0.01 \\ 1.56 \\ 1.32\pm0.02 \\ 1.56 \\ 1.32\pm0.02 \\ 1.56 \\ 1.32\pm0.02 \\ 1.56 \\ 1.37\pm0.01 \\ 1.65 \\ 1.37\pm0.01 \\ 1.65 \\ 1.37\pm0.01 \\ 1.65 \\ 1.37\pm0.01 \\ 1.65 \\ 1.51 \\ 1.17\pm0.03 \\ 1.05 \\ 1.51 \\ 1.17\pm0.01 \\ 1.51 \\ 1.51 \\ 1.17\pm0.01 \\ 1.51 \\ 1.51 \\ 1.17\pm0.01 \\ 1.51 \\ 1.115 $	$\begin{array}{c} 1.21\pm0.02 \\ 1.5\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.26\pm0.01 \\ 1.26\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.01 \\ 1.55 \\ 1.35\pm0.01 \\ 1.55 \\ 1.35\pm0.01 \\ 1.55 \\ 1.31\pm0.01 \\ 1.55 \\ 1.31\pm0.01 \\ 1.55 \\ 1.31\pm0.01 \\ 1.55 \\ 1.31\pm0.01 \\ 1.55 \\ 1.55 \\ 1.31\pm0.01 \\ 1.55 \\ 1.$	$\begin{array}{c} 1.21\pm0.02 \\ 1.5\pm0.02 \\ 1.61\pm0.01 \\ 1.5\pm0.02 \\ 1.5\pm0.02 \\ 0.44\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.25\pm0.01 \\ 1.33\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.32\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.01 \\ 1.35\pm0.01 \\ 1.55 \\ 1.35\pm0.01 \\ 1.55 \\ 1.35\pm0.01 \\ 1.55 \\ 1.35\pm0.01 \\ 1.45 \\ 1.31\pm0.01 \\ 1.45 \\ 1.31\pm0.01 \\ 1.5$
[Fe/H]	(dex)	$9 - 0.01 \pm 0.02$	$4 - 0.31 \pm 0.01$	$7 -0.29\pm0.01$	-0.38 ± 0.01	$7 0.06\pm0.02$		-0.34 ± 0.02	$\begin{array}{rrr} -0.34\pm0.02 \\ 1 & 0.21\pm0.03 \end{array}$	-0.34±0.02 1 0.21±0.03 6 -0.21±0.01	 -0.34±0.02 0.21±0.03 0.21±0.01 0.31±0.02 		 -0.34±0.02 0.21±0.03 0.21±0.01 0.31±0.02 0.31±0.02 -0.36±0.01 -0.08±0.01 	 -0.34±0.02 0.21±0.03 0.21±0.01 0.31±0.02 0.31±0.02 -0.36±0.01 -0.08±0.01 -0.34±0.01 	 -0.34±0.02 0.21±0.03 0.21±0.01 0.31±0.02 0.31±0.02 -0.36±0.01 -0.08±0.01 -0.34±0.01 -0.24±0.02 	 -0.34±0.02 0.21±0.03 0.21±0.01 0.31±0.02 0.31±0.02 0.31±0.02 -0.36±0.01 -0.34±0.01 -0.24±0.02 0.2±0.02 	 -0.34±0.02 0.21±0.03 0.21±0.01 0.31±0.02 -0.36±0.01 -0.08±0.01 -0.08±0.01 -0.34±0.01 0.2±0.02 0.2±0.02 0.2±0.02 	 -0.34±0.02 0.21±0.03 0.21±0.01 0.31±0.02 0.31±0.02 0.31±0.02 0.34±0.01 0.034±0.01 0.034±0.01 0.02±0.02 0.2±0.02 0.27±0.01 0.027±0.01 	 -0.34±0.02 -0.31±0.03 0.21±0.01 -0.21±0.01 0.31±0.02 -0.36±0.01 -0.34±0.01 -0.34±0.01 -0.34±0.01 0.240.02 -0.2±0.02 -0.27±0.01 0.02±0.02 	 -0.34±0.02 -0.31±0.03 0.21±0.01 -0.21±0.01 0.31±0.02 -0.36±0.01 -0.36±0.01 -0.34±0.01 -0.24±0.01 0.2±0.02 -0.27±0.01 0.02±0.02 -0.23±0.01 	 -0.34±0.02 -0.31±0.03 0.21±0.01 -0.21±0.01 -0.36±0.01 -0.36±0.01 -0.34±0.01 -0.03±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.01 6 0.22±0.01 6 0.22±0.01 6 0.23±0.01 6 -0.23±0.01 6 -0.23±0.01 	 -0.34±0.02 -0.31±0.03 -0.21±0.01 -0.21±0.01 -0.31±0.02 -0.34±0.01 -0.34±0.01 -0.34±0.01 -0.02±0.02 0.2±0.02 -0.27±0.01 -0.23±0.01 -0.23±0.01 -0.19±0.02 0.19±0.02 	 -0.34±0.02 -0.31±0.03 -0.21±0.01 -0.21±0.01 -0.31±0.02 -0.34±0.01 -0.34±0.01 -0.34±0.01 -0.240.02 0.2±0.02 -0.27±0.01 -0.27±0.01 -0.23±0.01 -0.41±0.01 0.19±0.02 8 0.06±0.02 	 -0.34±0.02 -0.31±0.03 -0.21±0.01 -0.21±0.01 -0.36±0.01 -0.36±0.01 -0.34±0.01 -0.24±0.02 -0.24±0.02 -0.24±0.01 -0.24±0.02 0.2±0.02 0.2±0.02 0.19±0.02 0.19±0.02 0.01±0.01 0.01±0.01 0.01±0.02 0.01±0.02 0.01±0.02 0.01±0.02 	 -0.34±0.02 -0.31±0.03 0.21±0.01 -0.21±0.01 -0.36±0.01 -0.36±0.01 -0.34±0.01 -0.34±0.01 -0.24±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.01 0.19±0.02 0.11±0.01 0.01±0.01 0.01±0.01 0.01±0.01 0.01±0.01 	 -0.34±0.02 -0.31±0.03 0.21±0.01 -0.21±0.01 -0.36±0.01 -0.36±0.01 -0.34±0.01 -0.02±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.19±0.02 0.19±0.02 0.19±0.02 0.01±0.01 	 -0.34±0.02 -0.21±0.03 -0.21±0.01 -0.21±0.01 -0.31±0.02 -0.34±0.01 -0.34±0.01 -0.34±0.01 -0.240.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.19±0.01 0.19±0.02 0.19±0.02 0.19±0.02 0.19±0.02 0.19±0.02 0.19±0.01 0.19±0.02 0.141±0.01 0.19±0.02 0.19±0.02 0.19±0.02 0.145±0.01 0.45±0.02 	 -0.34±0.02 -0.31±0.03 0.21±0.01 -0.21±0.01 -0.36±0.01 -0.36±0.01 -0.34±0.01 -0.05±0.02 0.2±0.02 0.2±0.02 0.2±0.01 0.2±0.02 0.2±0.01 0.2±0.01 0.2±0.02 0.2±0.02 0.2±0.01 0.19±0.01 0.19±0.01 0.19±0.01 0.19±0.01 0.19±0.01 0.19±0.02 0.19±0.01 0.19±0.01 0.19±0.02 0.19±0.01 0.145±0.01 	 -0.34±0.02 -0.34±0.03 -0.21±0.01 -0.21±0.01 -0.36±0.01 -0.36±0.01 -0.36±0.01 -0.24±0.02 -0.24±0.02 -0.24±0.02 -0.24±0.02 0.24±0.02 -0.23±0.01 -0.24±0.02 0.19±0.02 0.19±0.02 0.19±0.02 0.19±0.02 0.19±0.02 0.116±0.01 0.141±0.01 0.145±0.02 0.23±0.01 0.23±0.01 0.245±0.02 0.23±0.01 	 -0.34±0.02 -0.34±0.03 0.21±0.03 -0.21±0.01 0.31±0.02 -0.36±0.01 -0.36±0.01 -0.34±0.01 -0.24±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.01 0.19±0.02 0.19±0.02 0.19±0.02 0.19±0.02 0.19±0.02 0.11±0.01 0.15±0.01 0.41±0.01 0.45±0.02 0.45±0.02 0.45±0.03 0.33±0.01 0.33±0.01 0.34±0.03 0.34±0.03 	 -0.34±0.02 -0.34±0.03 0.211±0.03 -0.211±0.01 -0.36±0.01 -0.36±0.01 -0.34±0.01 -0.05±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.01 0.2±0.02 0.2±0.02 0.2±0.01 0.2±0.02 0.2±0.02 0.2±0.02 0.2±0.01 0.2±0.02 0.2±0.01 0.19±0.02 0.19±0.02 0.01±0.01 0.45±0.02 0.31±0.01 	 -0.34±0.02 -0.34±0.03 0.21±0.03 -0.21±0.01 0.31±0.02 -0.36±0.01 -0.34±0.01 -0.05±0.02 0.2±0.02 0.2±0.02 0.2±0.01 0.2±0.02 0.2±0.01 0.2±0.01 0.19±0.01 0.19±0.02 0.19±0.01 0.19±0.01 0.19±0.02 0.19±0.01 0.19±0.02 0.19±0.01 0.19±0.02 0.19±0.02 0.19±0.01 0.19±0.01 0.19±0.02 0.19±0.01 0.19±0.01 0.19±0.01 0.11±0.01 0.11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\log g$	(cgs)	$8 2.95 \pm 0.09$	5 3.26 ± 0.04	$9 2.68 \pm 0.07$	$7 2.5 \pm 0.06$	$5 2.86\pm0.07$	$6 2.55 \pm 0.1$		$3 2.65 \pm 0.11$	$\begin{array}{rrr} 3 & 2.65 \pm 0.11 \\ 7 & 2.82 \pm 0.06 \end{array}$	3 2.65±0.11 7 2.82±0.06 1 3.32±0.07	 3. 2.65±0.11 7. 2.82±0.06 1. 3.32±0.07 7. 2.52±0.07 	 3 2.65±0.11 7 2.82±0.06 1 3.32±0.07 7 2.52±0.07 9 2.69±0.06 	 3 2.65±0.11 7 2.82±0.06 1 3.32±0.07 7 2.52±0.07 9 2.69±0.06 7 2.76±0.06 	 3 2.65±0.11 7 2.82±0.06 1 3.32±0.07 7 2.52±0.07 9 2.69±0.06 7 2.76±0.06 5 2.68±0.08 	 2.65±0.11 2.82±0.06 3.32±0.07 3.32±0.07 2.52±0.06 2.69±0.06 2.68±0.08 3.32±0.06 	 3. 2.65±0.11 7. 2.82±0.06 1. 3.32±0.07 7. 2.52±0.07 9. 2.69±0.06 7. 2.76±0.06 5. 2.68±0.08 3.32±0.06 4. 2.7±0.08 	 3 2.65±0.11 7 2.82±0.06 1 3.32±0.07 7 2.52±0.07 9 2.69±0.06 5 2.69±0.06 3 3.32±0.06 4 2.7±0.08 9 3.08±0.06 	 3. 2.65±0.111 7. 2.82±0.066 1. 3.32±0.077 7. 2.52±0.066 7. 2.55±0.066 5. 2.68±0.086 3.322±0.066 3.322±0.066 9. 3.08±0.068 5. 2.68±0.086 9. 3.08±0.068 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 2.65±0.111 2.82±0.06 3.32±0.07 2.52±0.06 2.52±0.06 2.69±0.06 2.68±0.08 3.32±0.06 3.32±0.06 3.32±0.06 2.68±0.08 3.08±0.06 2.68±0.08 2.68±0.08 2.68±0.08 2.43±0.06 2.43±0.06 	 3 2.65±0.111 7 2.82±0.06 1 3.32±0.07 7 2.55±0.06 7 2.56±0.06 5 2.68±0.08 3.32±0.06 3.32±0.06 3.08±0.06 	 3 2.65±0.111 7 2.82±0.067 1 3.32±0.077 2.552±0.066 2.69±0.066 2.68±0.086 3.322±0.066 3.322±0.066 3.08±0.066 2.43±0.066 2.43±0.066 2.43±0.066 2.83±0.066 2.83±0.066 2.83±0.066 2.83±0.066 2.83±0.066 2.83±0.066 2.77±0.088 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 2.65±0.111 2.82±0.06 3.32±0.07 2.52±0.06 2.52±0.06 2.52±0.06 2.68±0.08 3.32±0.06 3.32±0.06 3.32±0.06 3.32±0.06 2.68±0.08 3.32±0.06 3.32±0.0	 2.65±0.111 2.82±0.06 3.32±0.07 2.52±0.06 2.52±0.06 2.52±0.06 2.68±0.08 3.32±0.06 3.32±0.06 3.32±0.06 3.08±0.06 2.68±0.08 3.23±0.06 3.22±0.06 3.29±0.05 4.277±0.08 3.29±0.06 3.29±0.06 2.8±0.06 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 3. 2.65±0.111 7. 2.82±0.06 7. 2.52±0.07 6. 2.69±0.06 5. 2.68±0.08 9. 2.68±0.08 9. 3.32±0.06 6. 2.68±0.08 9. 3.08±0.06 6. 2.43±0.06 6. 2.43±0.06 6. 2.43±0.06 6. 2.43±0.06 7. 3.29±0.05 6. 2.8±0.08 3.0±0.06 3.37±0.05 6. 3.37±0.05 6. 3.37±0.05 6. 3.37±0.05 6. 3.37±0.05 7. 2.61±0.06 9. 3.17±0.07 	 3. 2.65±0.111 7. 2.82±0.06 7. 2.82±0.06 6. 2.52±0.06 5. 2.69±0.06 6. 2.76±0.08 3.32±0.06 3.32±0.06 3.08±0.08 3.08±0.06 3.08±0.06 3.02±0.06 3.02±0.06 3.02±0.06 3.01±0.06 3.01±0.06 3.37±0.05 3.37±0.06 3.17±0.07 3.17±0.06 3.17±0.06 3.17±0.06 3.17±0.06 3.17±0.06 3.17±0.06 	 3. 2.65±0.01 7. 2.82±0.06 7. 2.82±0.07 7. 2.52±0.07 7. 2.55±0.06 5. 2.68±0.08 3.32±0.06 5. 2.68±0.08 3.32±0.06 6. 2.43±0.06 8. 2.87±0.09 6. 2.83±0.06 6. 2.83±0.06 3.02±0.06 3.02±0.06 3.02±0.06 3.37±0.05 3.17±0.07 3.17±0.07 3.17±0.06 8. 2.51±0.06 8. 2.51±0.06 8. 2.51±0.06 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
T _{eff}	(K)	4586 ± 28	4950 ± 15	4646 ± 15	4742 ± 17	4558 ± 25	4812 ± 26	4407-43	4431工いい	449/エリン 4697土17	443 (エンシン 4697土17 4720土31	448 / エッッ 4697±17 4720±31 4702±17	448/±0- 4697±17 4720±31 4702±17 4662±19	4487 ± 50	$\begin{array}{c} 4^{457}(\pm)^{2}\\ 4697\pm17\\ 4702\pm17\\ 4702\pm17\\ 4662\pm19\\ 4728\pm17\\ 4728\pm17\end{array}$	4497±17 4697±17 4702±17 4702±17 4662±12 4622±12 4491±25 471±25	4457 ± 25 4697 ± 17 4702 ± 17 4602 ± 15 4602 ± 15 4761 ± 25 4761 ± 23 4653 ± 24	$\begin{array}{c} 4437 \pm 27\\ 4697 \pm 17\\ 4697 \pm 17\\ 4702 \pm 17\\ 4662 \pm 19\\ 4761 \pm 25\\ 4761 \pm 23\\ 4781 \pm 23\\ 4781$	$\begin{array}{c} 4697\pm 17\\ 4697\pm 17\\ 4697\pm 17\\ 4702\pm 17\\ 4762\pm 19\\ 4761\pm 25\\ 4761\pm 22\\ 4653\pm 224\\ 4653\pm 224\\ 4653\pm 224\\ 4623\pm 224\end{array}$	$\begin{array}{c} 4697\pm 17\\ 4697\pm 17\\ 4697\pm 17\\ 4702\pm 17\\ 4762\pm 19\\ 4702\pm 17\\ 4652\pm 17\\ 4653\pm 29\\ 4653\pm 29\\ 4653\pm 29\\ 4633\pm 29\\ 4699\pm 19\\ 4699\pm 19\\ 4699\pm 19\\ 4699\pm 19\\ 4699\pm 19\\ 4699\pm 19\\ 4699\pm 10\\ 4699\pm 10\\ 4699\pm 10\\ 4699\pm 10\\ 4699\pm 10\\ 4691\pm 10\\$	$\begin{array}{c} 457524\\ 4697\pm17\\ 4697\pm17\\ 4702\pm17\\ 4662\pm17\\ 4662\pm16\\ 4652\pm12\\ 4691\pm26\\ 4653\pm24\\ 4653\pm24\\ 4699\pm16\\ 4699\pm12\\ 4575\pm16\end{array}$	$\begin{array}{c} 4457 \pm 27\\ 4697 \pm 17\\ 4697 \pm 17\\ 4702 \pm 17\\ 4662 \pm 19\\ 4761 \pm 23\\ 4691 \pm 25\\ 4691 \pm 25\\ 4691 \pm 26\\ 4691 \pm 16\\ 4691 \pm 16\\ 4575 \pm 16\\ 4575 \pm 16\\ 4575 \pm 16\end{array}$	$\begin{array}{c} 4597\pm 27\\ 4697\pm 17\\ 4697\pm 17\\ 4702\pm 17\\ 4762\pm 19\\ 4761\pm 23\\ 4653\pm 24\\ 4653\pm 24\\ 4653\pm 24\\ 4653\pm 24\\ 4692\pm 16\\ 4575\pm 16\\ 457\pm 28\\ 455\pm 28$ 455\pm 28 45	$\begin{array}{c} 4697\pm 17\\ 4697\pm 17\\ 4697\pm 17\\ 4702\pm 17\\ 4762\pm 17\\ 4761\pm 23\\ 4653\pm 29\\ 4653\pm 29\\ 4653\pm 29\\ 4653\pm 29\\ 4659\pm 16\\ 4597\pm 28\\ 4592\pm 26\\ 4512\pm 26\\ 4592\pm 26\\ 4512\pm 26$ 4512\pm 26 4512\pm 26\\ 4512\pm 26 4512\pm 26 4512\pm 26 4512\pm 26 4512\pm 26 4512\pm 26 4512 4512 4512 4512 4512	$\begin{array}{c} 4697\pm 17\\ 4697\pm 17\\ 4697\pm 17\\ 4702\pm 17\\ 4702\pm 17\\ 4652\pm 19\\ 4491\pm 25\\ 4491\pm 25\\ 4653\pm 24\\ 4653\pm 24\\ 4653\pm 24\\ 4699\pm 19\\ 4559\pm 26\\ 4559\pm 26\\ 4559\pm 26\\ 4712\pm 21\\ 4559\pm 26\\ 4830\pm 17\\ 2830\pm 17\\$	$\begin{array}{c} 4697\pm 17.25\\ 4697\pm 17\\ 4697\pm 17\\ 4702\pm 17\\ 4702\pm 17\\ 4662\pm 19\\ 4761\pm 23\\ 4761\pm 23\\ 4692\pm 12\\ 4633\pm 22\\ 4693\pm 19\\ 4633\pm 22\\ 4699\pm 19\\ 4575\pm 16\\ 4559\pm 26\\ 4559\pm 26\\ 4512\pm 21\\ 4512\pm 21\\ 4830\pm 17\\ 2820\pm 26\\ 4642\pm 16\\ 4642\pm 16\\ 462\pm 26\\ 4642\pm 16\\ 462\pm 26\\ 462\pm 26$ 462\pm 26 46 462\pm 26 46 46 46 46 46 46 46 46 46 4	$\begin{array}{c} 4697\pm 17.22\\ 4697\pm 17\\ 4702\pm 17\\ 4702\pm 19\\ 4761\pm 23\\ 4653\pm 24\\ 4653\pm 24\\ 4653\pm 24\\ 4653\pm 24\\ 4657\pm 16\\ 4659\pm 16\\ 4575\pm 16\\ 4575\pm 16\\ 4559\pm 26\\ 4575\pm 16\\ 452\pm 16$ 452\pm 16 452\pm	$\begin{array}{c} 4697\pm 17\\ 4697\pm 17\\ 4697\pm 17\\ 4702\pm 17\\ 4702\pm 17\\ 4761\pm 23\\ 4653\pm 24\\ 4653\pm 24\\ 4633\pm 12\\ 4632\pm 12\\ 4699\pm 16\\ 4597\pm 28\\ 4597\pm 28\\ 4597\pm 28\\ 4597\pm 28\\ 4592\pm 16\\ 4712\pm 21\\ 4830\pm 17\\ 469\pm 33\\ 4769\pm 33\\ $	$\begin{array}{c} 4697\pm17\\ 4697\pm17\\ 4697\pm17\\ 4702\pm17\\ 4702\pm17\\ 4662\pm19\\ 4702\pm12\\ 4702\pm12\\ 4653\pm29\\ 4653\pm29\\ 4653\pm29\\ 4692\pm16\\ 4597\pm28\\ 4597\pm28\\ 4597\pm28\\ 4712\pm21\\ 4830\pm17\\ 4830\pm17\\ 4830\pm17\\ 4830\pm16\\ 4830\pm16$ 4830\pm16	 4507±17 4697±17 4602±17 4702±17 4662±19 4491±25 4728±17 461±23±24 4633±23±24 4699±19 4699±19 4699±19 4597±28 4597±28 4597±28 4597±28 4642±16 46323±26 4631±26 46342±16 46323±26 4642±16 4642±16 4633±26 4634±176 4634±176 4634±16 	 4507±37 4697±17 4697±17 470±172 470±125 4761±22 469±12 4653±24 469±12 4575±16 45597±28 4559±26 4559±26 4575±16 4559±26 4572±17 4559±26 457±22 4559±26 4546±17 456±17 456±17 	$\begin{array}{c} 4697\pm 17.250\pm 17.450 \\ 4697\pm 17 \\ 4697\pm 17 \\ 4702\pm 17 \\ 4702\pm 17 \\ 4761\pm 23 \\ 4761\pm 23 \\ 4653\pm 24 \\ 4692\pm 16 \\ 4699\pm 19 \\ 4575\pm 16 \\ 4597\pm 28 \\ 4591\pm 26 \\ 4712\pm 2116 \\ 4830\pm 17 \\ 4830\pm 17 \\ 4830\pm 17 \\ 4712\pm 216 \\ 4705\pm 18 \\ 4705\pm 18$	$\begin{array}{c} 4.57 \pm 3.7 $
$\chi_{\mathrm{Fe_{I}}}$ cutoff	(ev)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	>>>	0.0	0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.0 0.0	0.0 0.0	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} & & \\$	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$
$N_{\rm Fe_{\rm I}}$		15	15	17	17	15	11	15		15	15 14	15 14 17	15 14 17 16	15 14 17 16 13	15 14 17 16 16 13	15 14 17 16 16 13 13 15	15 14 17 16 13 13 14 14	15 14 16 17 13 13 15 15 14 14 13	15 14 16 16 13 13 13 14 14 13 13 13 14	15 14 16 16 13 15 14 14 13 13 16 16	15 14 16 15 15 15 13 13 13 16 16	15 14 16 15 15 15 14 13 13 15 16 16 16	15 14 15 15 15 13 15 14 14 13 13 15 15 15 15	15 15 16 17 15 14 15 14 15 16 16 16 17 17 17 17	15 14 15 14 15 15 15 16 16 16 17 16 16 16	15 15 15 15 15 14 15 16 16 16 17 16 16 17 17 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	15 17 16 15 15 14 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	15 15 15 15 15 15 15 15 15 15 15 15 15 1	15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	15 15 15 15 15 15 15 15 15 15 15 15 15 1	15 17 16 17 16 16 16 16 17 16 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17	15 15 15 15 15 15 15 15 15 15 15 15 15 1	15 15 15 15 15 15 15 15 15 15 15 15 15 1
$\rm N_{Fe_{I}}$		123	167	156	154	131	125	94		148	$148 \\ 119$	148 119 153	$ 148 \\ 119 \\ 153 \\ 145 $	148 119 153 145 145 165	148 119 153 145 145 165 137	148 119 153 145 145 137 143	148 119 153 145 145 165 137 137 132 132	148 119 153 145 145 165 137 143 143 132 132	148 119 153 145 145 137 137 143 132 132 130 130	148 119 153 153 145 145 143 143 143 132 155 155	148 119 153 145 145 165 137 143 132 132 161 161 155 155	148 119 153 145 145 165 137 132 132 132 132 130 155 155 119	148 153 155 145 145 145 137 137 132 132 132 155 155 155 119 152 119	148 153 155 145 145 145 137 143 132 149 155 155 155 119 119 119	148 119 153 145 165 137 143 132 132 153 155 155 155 119 119 119 153 153 153	148 119 153 145 145 165 137 137 137 132 132 155 155 155 119 153 153 153 153 153 153 153 153 153 153	148 119 145 145 145 143 143 137 143 132 132 155 155 119 153 149 119 153 153 153 153 153 153 153 153 153 153	148 153 155 145 145 145 137 143 132 132 155 155 119 153 153 153 153 153 153 153 153 153 153	148 145 153 145 145 145 137 143 155 155 155 155 153 158 158 158 158 158 158 158 158 158 158	148 145 153 145 165 137 137 137 137 137 132 153 155 155 155 155 153 153 153 153 153	148 145 153 145 165 137 143 137 143 132 155 155 155 153 153 153 153 153 153 153	148 145 153 145 145 145 137 143 132 132 155 155 155 149 156 149 158 158 158 158 158 158 161 158 158 161 158 165 165 165 165 165 165 165 165 165 165	148 145 153 145 145 145 143 137 143 155 155 155 158 158 158 158 158 158 158
$v_{ m mic}$	$(\mathrm{km}~\mathrm{s}^{-1})$	1.41 ± 0.02	1.03 ± 0.01	1.22 ± 0.01	1.35 ± 0.01	1.22 ± 0.02	$1.56 {\pm} 0.01$	$1.5 {\pm} 0.02$		1.22 ± 0.01	1.22 ± 0.01 1.23 ± 0.03	1.22 ± 0.01 1.23 ± 0.03 1.45 ± 0.01	1.22 ± 0.01 1.23 ± 0.03 1.45 ± 0.01 1.23 ± 0.01	1.22 ± 0.01 1.23 ± 0.03 1.45 ± 0.01 1.23 ± 0.01 1.23 ± 0.01 1.21 ± 0.01	$\begin{array}{c} 1.22\pm0.01\\ 1.23\pm0.03\\ 1.45\pm0.01\\ 1.23\pm0.01\\ 1.21\pm0.01\\ 1.15\pm0.02\\ 1.15\pm0.02\end{array}$	1.22 ± 0.01 1.23 ± 0.03 1.45 ± 0.01 1.23 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02	1.22 ± 0.01 1.23 ± 0.03 1.45 ± 0.01 1.23 ± 0.01 1.23 ± 0.01 1.21 ± 0.02 1.02 ± 0.02 1.02 ± 0.02 1.3 ± 0.01	1.22 ± 0.01 1.23 ± 0.03 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.3 ± 0.01 1.07 ± 0.02	1.22 ± 0.01 1.22 ± 0.03 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01	1.22 ± 0.01 1.22 ± 0.03 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.29 ± 0.01	1.22 ± 0.01 1.22 ± 0.03 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.21 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01	1.22 ± 0.01 1.22 ± 0.03 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.34 ± 0.02 1.34 ± 0.02	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.3 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.34 ± 0.02 1.34 ± 0.02 1.34 ± 0.02 1.34 ± 0.02	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.34 ± 0.02 1.34 ± 0.02 1.34 ± 0.02 1.16 ± 0.02	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.29 ± 0.02 1.31 ± 0.01 1.3 ± 0.02 1.3 ± 0.02 1.3 ± 0.02 1.16 ± 0.02 1.16 ± 0.02 1.05 ± 0.0	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.02 1.31 ± 0.01 1.3 ± 0.02 1.3 ± 0.0	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.02 1.15 ± 0.02 1.15 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.02 1.34 ± 0.02 1.03 ± 0.02 1.03 ± 0.02 1.09 ± 0.01 1.09 ± 0.01 1.09 ± 0.01 1.09 ± 0.01 1.09 ± 0.01	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.02 1.34 ± 0.02 1.29 ± 0.02 1.09 ± 0.02 1.09 ± 0.02 0.9 ± 0.02	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.34 ± 0.02 1.03 ± 0.02 $1.03\pm$	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.3 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.02 1.31 ± 0.02 1.3 ± 0.02 1.3 ± 0.02 1.03 ± 0.02 1.03 ± 0.02 1.03 ± 0.02 1.03 ± 0.02 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.02 0.9 ± 0.02 0.9 ± 0.02 0.9 ± 0.02 1.16 ± 0.03	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.02 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.02 1.34 ± 0.02 1.03 ± 0.02 1.03 ± 0.02 1.03 ± 0.02 1.03 ± 0.02 1.03 ± 0.02 1.04 ± 0.02 1.32 ± 0.01 $1.32\pm$	1.22 ± 0.01 1.22 ± 0.01 1.23 ± 0.03 1.45 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.02 1.31 ± 0.02 1.34 ± 0.02 1.34 ± 0.02 1.09 ± 0.01 1.34 ± 0.02 1.34 ± 0.02 1.34 ± 0.02 1.34 ± 0.02 1.34 ± 0.02 1.9 ± 0.02 1.34 ± 0.02 1.32 ± 0.01 1.32 ± 0.01 1.32 ± 0.01 1.22 ± 0.01	1.22 ± 0.01 1.22 ± 0.01 1.45 ± 0.01 1.23 ± 0.01 1.21 ± 0.01 1.15 ± 0.02 1.02 ± 0.02 1.3 ± 0.01 1.07 ± 0.02 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.01 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.31 ± 0.02 1.34 ± 0.02 1.09 ± 0.01 1.32 ± 0.01 1.16 ± 0.03 1.19 ± 0.01 1.19 ± 0.01
[Fe/H]	(dex)	-0.03 ± 0.02	$-0.31 {\pm} 0.01$	-0.3 ± 0.01	$-0.38 {\pm} 0.01$	$0.04{\pm}0.02$	$-0.34{\pm}0.02$	$0.18{\pm}0.03$		-0.22 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.34 ± 0.01	$\begin{array}{c} -0.22\pm0.01\\ 0.3\pm0.02\\ -0.36\pm0.01\\ -0.09\pm0.01\\ -0.34\pm0.01\\ -0.04\pm0.02\end{array}$	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.34 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.34 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.34 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.34 ± 0.01 -0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.28 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.08 ± 0.02 -0.28 ± 0.01 -0.25 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.34 ± 0.01 -0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01 -0.43 ± 0.01 0.17 ± 0.02	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01 0.17 ± 0.02 0.04 ± 0.02	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01 0.17 ± 0.02 0.04 ± 0.02 0.04 ± 0.02	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.42 ± 0.02 0.0 ± 0.01 0.17 ± 0.02 0.0 ± 0.01 0.0 ± 0.01 -0.16 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01 0.17 ± 0.02 0.04 ± 0.02 0.0 ± 0.01 0.0 ± 0.01 0.0 ± 0.01 -0.16 ± 0.01 -0.37 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.42 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.0 ± 0.02 0.0 ± 0.02 0.0 ± 0.01 -0.37 ± 0.01 -0.37 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.28 ± 0.01 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01 0.17 ± 0.02 0.0 ± 0.02 0.0 ± 0.02 0.0 ± 0.01 -0.37 ± 0.01 0.42 ± 0.02 0.42 ± 0.02 0.42 ± 0.02	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.28 ± 0.01 -0.217 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.02 ± 0.01 -0.21 ± 0.01 0.42 ± 0.01 0.42 ± 0.01	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01 0.17 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.02 ± 0.01 0.12 ± 0.01 0.22 ± 0.01 0.33 ± 0.03	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 0.19 ± 0.01 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.42 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.02 ± 0.01 -0.37 ± 0.01 0.33 ± 0.03	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.08 ± 0.02 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01 0.17 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.042 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.33 ± 0.03 -0.22 ± 0.01 0.33 ± 0.03 -0.22 ± 0.01 0.33 ± 0.03 -0.22 ± 0.01 0.33 ± 0.03 -0.22 ± 0.01 0.33 ± 0.03	-0.22 ± 0.01 0.3 ± 0.02 -0.36 ± 0.01 -0.09 ± 0.01 -0.04 ± 0.02 0.19 ± 0.01 -0.28 ± 0.01 -0.28 ± 0.01 -0.28 ± 0.01 -0.25 ± 0.01 -0.43 ± 0.01 0.17 ± 0.02 0.0 ± 0.02 0.0 ± 0.01 0.17 ± 0.02 0.0 ± 0.01 0.17 ± 0.02 0.0 ± 0.01 0.12 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.33 ± 0.03 -0.25 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01 0.32 ± 0.01
$\log g$	(cgs)	2.98 ± 0.09	$3.31 {\pm} 0.04$	$2.71 {\pm} 0.06$	$2.59{\pm}0.06$	$2.88 {\pm} 0.08$	$2.6 {\pm} 0.1$	2.65 ± 0.11		2.85 ± 0.06	2.85 ± 0.06 3.35 ± 0.08	2.85 ± 0.06 3.35 ± 0.08 2.57 ± 0.07	2.85 ± 0.06 3.35 ± 0.08 2.57 ± 0.07 2.77 ± 0.07	$\begin{array}{c} 2.85\pm0.06\\ 3.35\pm0.08\\ 2.57\pm0.07\\ 2.77\pm0.07\\ 2.81\pm0.06\\ \end{array}$	$\begin{array}{c} 2.85\pm0.06\\ 3.35\pm0.08\\ 2.57\pm0.07\\ 2.77\pm0.07\\ 2.81\pm0.06\\ 2.69\pm0.08\\ \end{array}$	2.85 ± 0.06 3.35 ± 0.08 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.69 ± 0.08 3.35 ± 0.06	2.85 ± 0.06 3.35 ± 0.08 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.69 ± 0.08 3.35 ± 0.06 3.35 ± 0.08	2.85 ± 0.06 3.35 ± 0.08 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.69 ± 0.08 3.35 ± 0.06 3.35 ± 0.06 3.13 ± 0.06 3.13 ± 0.06	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 3.13 ± 0.06 3.13 ± 0.08 3.13 ± 0.08	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.69 ± 0.08 3.35 ± 0.06 3.35 ± 0.06 3.13 ± 0.06 2.71 ± 0.08 3.13 ± 0.06 2.71 ± 0.08	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.71 ± 0.08 2.71 ± 0.08 2.77 ± 0.06	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.69 ± 0.08 3.35 ± 0.06 3.35 ± 0.06 3.35 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.72 ± 0.08 2.71 ± 0.08 2.77 ± 0.06	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.81 ± 0.06 2.81 ± 0.06 3.35 ± 0.06 3.13 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.72 ± 0.08 2.72 ± 0.06 2.89 ± 0.09 2.89 ± 0.09	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 3.13 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.89 ± 0.09 2.89 ± 0.09 2.79 ± 0.08 3.0 ± 0.00	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 3.35 ± 0.06 2.71 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 3.13 ± 0.06 2.79 ± 0.09 2.89 ± 0.09 3.34 ± 0.05 3.34 ± 0.05	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.77 ± 0.06 2.81 ± 0.06 2.35 ± 0.06 3.35 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.82 ± 0.06 2.82 ± 0.06 2.82 ± 0.06 2.82 ± 0.06 2.82 ± 0.06 2.82 ± 0.06 2.82 ± 0.06 2.86 ± 0.06	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.77 ± 0.06 2.81 ± 0.06 2.81 ± 0.06 3.35 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.71 ± 0.08 2.82 ± 0.06 2.89 ± 0.09 2.79 ± 0.08 3.34 ± 0.05 3.34 ± 0.05 3.01 ± 0.05	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 2.71 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.89 ± 0.09 2.89 ± 0.09 2.89 ± 0.006 3.0 ± 0.06 3.34 ± 0.05 3.01 ± 0.1 3.01 ± 0.1	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.89 ± 0.09 2.89 ± 0.09 2.89 ± 0.06 3.0 ± 0.06 3.34 ± 0.05 3.0 ± 0.06 3.4 ± 0.05 2.86 ± 0.06 3.4 ± 0.05 2.86 ± 0.06 3.4 ± 0.05 2.86 ± 0.06 3.01 ± 0.1 3.4 ± 0.05 2.67 ± 0.06	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 2.71 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.71 ± 0.08 2.79 ± 0.09 2.82 ± 0.06 2.34 ± 0.05 3.34 ± 0.05 3.0 ± 0.06 3.34 ± 0.05 2.86 ± 0.06 3.19 ± 0.07 3.19 ± 0.07	2.85 ± 0.06 3.35 ± 0.07 2.77 ± 0.07 2.77 ± 0.07 2.77 ± 0.06 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.89 ± 0.09 2.89 ± 0.06 3.34 ± 0.05 3.01 ± 0.1 3.01 ± 0.1 3.01 ± 0.05 3.19 ± 0.07 3.19 ± 0.07 3.19 ± 0.07	2.85 ± 0.06 3.35 ± 0.07 2.77 ± 0.07 2.77 ± 0.07 2.77 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.72 ± 0.06 2.89 ± 0.09 2.89 ± 0.06 2.89 ± 0.06 3.0 ± 0.06 3.0 ± 0.06 3.0 ± 0.06 3.0 ± 0.06 3.19 ± 0.07 2.65 ± 0.06 3.19 ± 0.07 2.65 ± 0.06 3.19 ± 0.07 2.65 ± 0.06 3.19 ± 0.07	2.85 ± 0.06 3.35 ± 0.07 2.57 ± 0.07 2.77 ± 0.07 2.81 ± 0.06 2.89 ± 0.08 3.35 ± 0.06 2.72 ± 0.08 3.13 ± 0.06 2.71 ± 0.08 2.79 ± 0.09 2.89 ± 0.09 2.89 ± 0.06 3.34 ± 0.05 3.01 ± 0.1 3.4 ± 0.05 2.66 ± 0.06 3.19 ± 0.07 2.64 ± 0.06 3.19 ± 0.07 2.64 ± 0.06 2.64 ± 0.06 2.61 ± 0.06 3.19 ± 0.07 2.61 ± 0.06 3.19 ± 0.07 2.61 ± 0.06 3.19 ± 0.07 2.61 ± 0.06 3.19 ± 0.07 2.61 ± 0.06 3.19 ± 0.07 2.61 ± 0.06 3.19 ± 0.07 2.61 ± 0.06 3.19 ± 0.07
$T_{ m eff}$	(\mathbf{K})	4630 ± 30	5015 ± 15	$4706{\pm}19$	$4834{\pm}19$	$4601{\pm}25$	$4893{\pm}28$	4531 ± 34	4755+17		4753±31	4753 ± 31 4773 ± 18	4753 ± 31 4773 ± 18 4741 ± 20	4753±31 4773±18 4741±20 4792±17	4753±31 4773±18 4741±20 4792±17 4528±25	4753±31 4773±18 47741±20 4792±17 4528±25 4804±23	4753±31 4773±18 4741±20 4792±17 4528±25 4804±23 4707±26	4753±31 4753±31 4773±18 4792±17 4592±17 4804±23 4707±26 4707±26	4753±31 4753±31 4773±18 4792±17 4528±25 4804±23 4707±26 4792±19 4678±26	4753±31 4773±18 4773±18 4792±17 4528±25 4804±23 4707±26 4792±19 4678±26 473±19	4753±31 4773±18 4773±18 4792±17 4528±25 4804±23 4707±26 477±26 473±19 4678±26 4743±19 4636±18	4753±31 4773±18 4741±20 4792±17 4528±25 4804±23 4707±26 4792±19 4678±26 473±19 4636±18 4636±18	4753±31 4753±31 4773±18 4792±17 4528±25 4804±23 4792±19 4678±26 4792±19 4638±30 4638±30 4633±27 4603±27	4753±31 4773±18 4773±18 4792±17 4528±25 4804±23 4707±26 4792±19 4678±26 4743±19 4678±26 4735±19 4638±30 4603±27 4603±27	4753±31 4773±18 4773±18 4792±17 4528±25 4804±23 4707±26 4792±19 4678±26 4743±19 4678±26 4743±19 4636±18 4636±18 4638±30 4638±30 4657±23 4885±18	4753±31 4773±18 4773±18 4792±17 4528±25 4804±23 4707±26 4792±19 4678±26 4743±19 4678±26 4743±19 4638±30 4638±30 4638±30 4603±27 4757±23 4885±18 4705±17	4753±31 4773±18 4741±20 4792±17 4528±25 4804±23 4707±26 4792±19 4678±26 473±19 4678±26 473±19 4638±30 4638±30 4663±27 4765±18 4765±18 4765±18 4705±17 4885±18 4705±17 4865±18	4753±31 4753±31 4773±18 4792±17 4528±25 4804±23 4792±19 4678±26 4792±19 4678±26 4792±19 4678±28 4792±19 4638±30 4633±27 463±18 463±18 463±18 463±27 4705±17 485±18 485±18 4865±13 4865±13 4865±17 4865±18 4865±17 4855±18 4865±18 4855±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4855±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±18 4865±17 4865±18 4865±17 4865±18 4855±18455±18 4855±18 4855±18 4855±18455±18 4855±18 4855±18455±18 4855±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18 4855±18455±18 4855±18455±18 4855±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18 4855±18455±18455±18 4855±18455±185±185±1855±1855±1855±1855±1855±185	4753±31 4753±31 4773±18 4792±17 4528±25 4804±23 4707±26 4792±19 4678±26 4743±19 4678±26 4743±19 4636±18 4636±18 4635±17 4757±23 4885±18 4865±17 4885±18 4865±17 4885±18 4895±17 4885±18 4895±17 4885±18 4885±18 4885±18 4885±18 4885±18 4885±18 4885±18 4885±18 4885±17 4885±17 4885±17 4885±17 4885±17 4885±18 4885±18 4885±18 4885±18 4885±17 4885±17 4885±17 4885±17 4885±17 4885±18 4885±18 4885±17 4885±17 4885±17 4885±17 4885±18485±18 4885±18 4885±18485±18 4885±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18485±18 4885±18485±18485±18 4885±18485±18485±18 4885±18485±18485±18 4885±18485±18485±18 4885±18485±18485±18 4885±18485±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18 4885±18485±18485±18 4885±18485±18485±18 4885±18485±18485±18 485±18485±18485±18 485±18485±18485±18 485±18485±18485±18 485±18485±18485±18 485±18485±18485±18 485±18485±18485±18 485±18485±18485±18485±18 485±18485±18485±185±185±185±185±185±185±185±185±185±1	4753±31 4753±31 4773±18 4792±17 4528±25 4804±23 4707±26 4743±19 4678±26 4743±19 4678±26 4735±13 4683±30 4638±30 4663±18 485±18 4865±17 4816±33 4816±33 4816±33 4849±17 4931±17	4753±31 4753±31 4773±18 4792±17 4528±25 4804±23 4707±26 4743±19 4678±26 4743±19 4678±26 473±19 4638±30 4663±27 4765±17 4865±18 4865±18 4845±17 4845±17 4845±17 4845±17 4845±17 4845±17 4845±29	4753±31 4753±31 4773±18 4741±20 4528±25 4804±23 4707±26 4743±19 4678±26 4743±19 4636±18 4638±30 4638±30 4663±27 4705±17 4816±33 4885±18 4705±17 4816±33 4849±17 4845±17 4845±17 4845±17 4845±17 4845±17 4845±17 4845±17 4845±17 4845±17 4845±17 4845±17 4845±17 4855±18	4753±31 4753±31 4773±18 4792±17 4528±25 4804±23 4707±26 4773±19 4678±26 4743±19 4678±26 4743±19 4636±18 4636±18 4635±17 4757±23 4885±18 4865±17 4865±17 4816±29 4849±17 4865±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17 4855±17455±17 4855±17455±17 4855±1755±1755±1755±1755±1755±1755±1755±1
Star Name		$22390396\!-\!1500420$	$22035226\!-\!1457037$	22071748 - 1455524	$22033684\!-\!1449366$	22072768 - 1440392	$22254071\!-\!1431281$	22243423 - 1430033	$22235672\!-\!1428420$		22235003 - 1422417	$\begin{array}{c} 22235003 - 1422417\\ 22175268 - 1344270 \end{array}$	$\begin{array}{c} 22235003 - 1422417\\ 22175268 - 1344270\\ 22250508 - 1341415\end{array}$	$\begin{array}{c} 22235003 - 1422417\\ 22175268 - 1344270\\ 22250508 - 1341415\\ 22250508 - 1341415\\ 22174405 - 1338287\end{array}$	$\begin{array}{c} 22235003-1422417\\ 22175268-1344270\\ 22250508-1341415\\ 222174405-1338287\\ 22177405-1338287\\ 22185037-1257588\end{array}$	22235003 - 1422417 22175268 - 1344270 22250508 - 1341415 22174405 - 1333287 22185037 - 1257588 22286037 - 1257588	22235003 - 1422417 22175268 - 1344270 22250508 - 1341415 22174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22195215 - 1234594	22235003 - 1422417 22175268 - 1344270 22250508 - 1341415 22174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22195215 - 1234594 21563608 - 1202424	22235003 - 1422417 22175268 - 1341270 22250508 - 1341415 22174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22195215 - 1234594 21563608 - 1202424 215630887 - 1159078	22235003 - 1422417 22175268 - 1344270 22250508 - 1344270 2225037 - 138287 22174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22204635 - 1245072 22195215 - 1234594 21590887 - 1159078 21590887 - 1159078	22235003 - 1422417 22175268 - 1344270 22250508 - 1341415 22174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22195215 - 1234594 21563608 - 1202424 21563608 - 1159078 22015504 - 1153022 22015504 - 1153022	22235003 - 1422417 22175268 - 1341270 22250508 - 1341415 222174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22195215 - 1234594 21563608 - 1202424 21563608 - 1202424 21590887 - 1159078 22013369 - 1141245 22013369 - 1141245 22013369 - 1141245	22235003 - 1422417 22175268 - 1341270 22250508 - 1341415 22174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22195215 - 12450424 21563608 - 1245078 22195215 - 1234594 2155036 - 1245078 221950887 - 1153022 22013369 - 1141245 22013369 - 1141245 22013369 - 1141245 22013369 - 1141245 22013488 - 1139147	22235003 - 1422417 22175268 - 1341270 22250508 - 13414155 22174405 - 1338287 22185037 - 1257588 22204635 - 12459424 21563608 - 1202424 21563608 - 120242424 21563608 - 1153022 22195015504 - 1153022 22015504 - 1153022 22015504 - 1125284 2200161 - 1125284 220074730 - 1059405	22235003 - 1422417 22175268 - 1341270 22250508 - 1341415 22174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22195215 - 1245042 221590887 - 1159078 21563608 - 1202424 21563608 - 1202424 21590887 - 1159078 22015504 - 1153022 22015504 - 1125284 22013369 - 1141245 22074730 - 1059405 22074730 - 1059405	22235003 - 1422417 22175268 - 1341415 22250508 - 1341415 222185037 - 1257588 222185037 - 1257588 22204635 - 1245072 22195215 - 1234594 21563608 - 1202424 21563608 - 1202424 215504 - 1153028 22015504 - 1153028 22013369 - 1141245 22013369 - 1141245 22013369 - 1141245 22013369 - 1141245 22013369 - 1141245 22013369 - 1141245 220136597 22014557 - 0956597	22235003 - 1422417 22175268 - 1341415 22250508 - 1341415 222185037 - 1257588 222185037 - 1257588 222195215 - 1245042 22195215 - 1245047 22195215 - 12450478 215504 - 1153028 221950887 - 1153028 22013369 - 1141245 22013369 - 11412455 22013369 - 114155284 22013369 - 114125284 22013369 - 114155694055 22114557 - 09574333 22105372 - 09565597 22105372 - 09565597	22235003 - 1422417 22175268 - 1341270 22250508 - 1341415 222174405 - 1338287 22185037 - 1257588 22204635 - 1245072 22195215 - 124594594 21563608 - 1202424 21563608 - 12024244 21590887 - 1153078 22105369 - 11412455 22013369 - 11412455 22013369 - 11412455 22013369 - 11412455 22013369 - 114152844 22015372 - 095743335 22105372 - 0956597 220053624 - 09485555 2201180 - 09443355	22235003 - 1422417 22175268 - 1341270 22250508 - 13414155 22174405 - 1338287 22185037 - 1257588 22195215 - 12459424 21563608 - 12024244 21563608 - 12024244 21590887 - 1159078 22195078 - 11412455 22015369 - 11412455 22013369 - 11412455 22013369 - 11412455 22013369 - 11412455 22013369 - 114157 - 095743335 22104061 - 11252844 220138624 - 0956597 2201180 - 094433555 2201180 - 094433555 22001180 - 094433555 22001180 - 094433555	$\begin{array}{c} 22235003 - 1422417\\ 22175268 - 1341415\\ 22175405 - 1341415\\ 222185037 - 1257588\\ 222185037 - 1257588\\ 22195515 - 1245072\\ 221955215 - 1245072\\ 22155048 - 1153078\\ 215504 - 1153022\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1059405\\ 22013369 - 1059405\\ 220139160 - 0944335\\ 22013945 - 099229\\ 2201494 - 0992929\\ 2201494 - 099$	$\begin{array}{c} 22235003 - 1422417\\ 22175268 - 1341415\\ 22175405 - 1341415\\ 222185037 - 1257588\\ 222185037 - 1257588\\ 22195215 - 124507\\ 22195215 - 124507\\ 221563608 - 1202424\\ 215504 - 1153022\\ 221590887 - 1153022\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 10944335\\ 22013945 - 0992299\\ 22013945 - 0990229\\ 22013945 - 0909229$	$\begin{array}{c} 22235003 - 1422417\\ 22175268 - 1341415\\ 22175405 - 1341415\\ 222150508 - 1341415\\ 222155037 - 1257588\\ 222195215 - 1234594\\ 21563608 - 1245072\\ 22195215 - 1234594\\ 21563608 - 1202424\\ 21563608 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22013369 - 114153022\\ 22013369 - 114153022\\ 22013369 - 0957433\\ 22013369 - 0957435\\ 22013361 - 0957435\\ 22013361 - 099229\\ 22013945 - 0999229\\ 220550 - 0854435\\ 22055114 - 0848002\\ 22055114 - 084802\\ 22055114 - 08480\\ 22055114$	$\begin{array}{c} 22235003 - 1422417\\ 22175268 - 1341415\\ 22175405 - 1341415\\ 22150508 - 1341415\\ 22155037 - 1257588\\ 222195215 - 1234594\\ 21563608 - 1202424\\ 21563608 - 1202424\\ 21563608 - 1202424\\ 21563608 - 1153022\\ 2219508 - 1141245\\ 22015504 - 01559405\\ 22013369 - 1141245\\ 22013369 - 1141245\\ 22015372 - 0956597\\ 22013645 - 01954555\\ 22013945 - 099229\\ 22013945 - 099229\\ 22055144 - 0848002\\ 22055144 - 0848002\\ 22055144 - 0840028\\ 2205514 - 0840028\\ 2205514 - 08$

```
continued,
<u> </u>
<b>n</b>
$\mathbf{le}$
9
لع

	cutoff	(Aŝ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		.7	.2	7	.7	7	.7	.7	.7	.7	. 7	.7	. 7	.2	.2	.7	7	.7
	$_{ m i}$ $\chi_{ m FeI}$	¥)		C	C	J	C	C	C	C	C	C	C	C	C	C		.1	-	CN.	<i>с</i> <b>1</b>	CN.	<i>с</i> <b>1</b>	ς. <b>γ</b>	<i>.</i> N	<i>с</i> <b>1</b>	CN.	CN.	CN.	1	Η	CN.	CN	
	$N_{\rm FeI}$		15	15	17	14	16	17	16	10	16	15	15	15	16	17		ъ	6	13	9	6	9	15	10	13	14	13	14	3	11	6	11	10
	$N_{\rm Fe II}$		158	139	153	132	154	149	139	147	129	139	150	151	154	136		11	35	28	26	36	41	32	37	48	62	44	47	32	36	33	40	31
	$v_{ m mic}$	$(\mathrm{km}~\mathrm{s}^{-1})$	$1.23 \pm 0.01$	$1.36 {\pm} 0.02$	$1.46 {\pm} 0.01$	$1.38 {\pm} 0.02$	$1.17 \pm 0.02$	$1.49 \pm 0.01$	$1.38 \pm 0.01$	$1.4 \pm 0.01$	$1.36 {\pm} 0.01$	$1.11 \pm 0.02$	$1.21 \pm 0.02$	$1.21 \pm 0.02$	$0.99 \pm 0.02$	$1.19 \pm 0.02$		$2.8 \pm 0.15$	$0.74{\pm}0.13$	$1.7 {\pm} 0.17$	$2.18{\pm}0.09$	$1.8{\pm}0.06$	$1.76{\pm}0.06$	$1.88 {\pm} 0.09$	$1.17 {\pm} 0.14$	$1.82 {\pm} 0.13$	$1.4 \pm 0.05$	$1.69 \pm 0.05$	$1.48 \pm 0.07$	$1.5 \pm 0.09$	$2.39{\pm}0.35$	$1.26 {\pm} 0.09$	$2.03{\pm}0.15$	$2.14 \pm 0.08$
NLTE	[Fe/H]	(dex)	$-0.29\pm0.01$	$-0.13 \pm 0.02$	$-0.21 \pm 0.01$	$-0.01 \pm 0.02$	$-0.24 \pm 0.01$	$-0.52 \pm 0.01$	$0.03 \pm 0.01$	$-0.32 \pm 0.01$	$0.13 {\pm} 0.02$	$0.13 {\pm} 0.01$	$-0.17 \pm 0.01$	$-0.09\pm0.01$	$0.05 \pm 0.01$	$0.12 \pm 0.01$		$-2.77{\pm}0.1$	$-0.85 \pm 0.08$	$-2.45\pm0.03$	$-1.66\pm0.11$	$-2.73\pm0.03$	$-2.46{\pm}0.05$	$-3.0\pm0.03$	$-2.2 \pm 0.04$	$-2.11\pm0.02$	$-1.71 \pm 0.08$	$-1.99 \pm 0.14$	$-1.9\pm0.11$	$-2.26{\pm}0.13$	$-2.54{\pm}0.08$	$-2.88\pm0.02$	$-1.71 \pm 0.09$	$-1.66\pm0.07$
	$\log g$	(cgs)	$2.87 {\pm} 0.06$	$2.46 {\pm} 0.09$	$2.59{\pm}0.06$	$2.76{\pm}0.08$	$3.02 {\pm} 0.06$	$2.44{\pm}0.06$	$2.67{\pm}0.08$	$2.59{\pm}0.07$	$2.81 {\pm} 0.08$	$3.0{\pm}0.06$	$3.12 {\pm} 0.06$	$2.93{\pm}0.07$	$3.24{\pm}0.05$	$3.21{\pm}0.06$		$3.75 {\pm} 0.05$	$4.34 {\pm} 0.18$	$3.0{\pm}0.05$	$2.65 {\pm} 0.35$	$0.11 {\pm} 0.09$	$0.13 {\pm} 0.11$	$0.31 {\pm} 0.1$	$3.93{\pm}0.23$	$4.0 {\pm} 0.05$	$2.96{\pm}0.18$	$2.93{\pm}0.35$	$3.01{\pm}0.29$	$2.83 {\pm} 0.29$	$2.1 \pm 0.39$	$2.99{\pm}0.05$	$2.24{\pm}0.39$	$0.77 \pm 0.21$
	$T_{\rm eff}$	(K)	$4615 \pm 17$	$4389 \pm 27$	$4757{\pm}17$	$4550{\pm}26$	$4693 \pm 22$	$4850{\pm}17$	$4726{\pm}24$	$4758{\pm}20$	$4712 \pm 26$	$4693 \pm 21$	$4769{\pm}19$	$4602 \pm 22$	$4720{\pm}19$	$4790 \pm 21$	et al. 2018)	$6345\pm 201$	$5991{\pm}107$	$5297{\pm}24$	$5221{\pm}147$	$4517 \pm 21$	$4561 \pm 32$	$4598 \pm 27$	$5495{\pm}75$	$6001{\pm}24$	$5116 \pm 93$	$5085 \pm 157$	$5187{\pm}134$	$5411 \pm 118$	$5339{\pm}114$	$5254{\pm}24$	$5185{\pm}145$	4565±96
	$\chi_{ m Fe_{I}}{ m cutoff}$	(ev)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Stars (Hansen	2.7	1.2	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	1.2	1.2	2.7	2.7	2.7
	$N_{\rm Fe I}$		15	15	17	14	16	17	16	6	16	15	15	15	16	17	liance 3	ы	6	13	9	6	4	15	10	13	14	13	14	З	11	6	11	10
	$\rm N_{Fe_{I}}$		161	139	153	132	160	163	138	148	128	136	150	153	154	136	cess Al	11	35	28	26	36	41	32	37	48	62	44	47	32	38	33	39	30
	$v_{ m mic}$	$(\mathrm{km}~\mathrm{s}^{-1})$	$1.19 \pm 0.01$	$1.36 {\pm} 0.01$	$1.42 {\pm} 0.01$	$1.37 {\pm} 0.01$	$1.13 \pm 0.02$	$1.4 \pm 0.01$	$1.36 \pm 0.01$	$1.36 \pm 0.01$	$1.32 \pm 0.01$	$1.1 {\pm} 0.02$	$1.17 \pm 0.02$	$1.19 \pm 0.02$	$0.97 \pm 0.02$	$1.17 \pm 0.02$	$R ext{-}Prc$	$2.81 \pm 0.15$	$0.87 \pm 0.12$	$2.12 \pm 0.2$	$2.23{\pm}0.07$	$1.82 \pm 0.07$	$1.77 {\pm} 0.05$	$1.94{\pm}0.08$	$1.29 {\pm} 0.15$	$1.64{\pm}0.08$	$1.45 {\pm} 0.05$	$1.69 \pm 0.05$	$1.53 {\pm} 0.07$	$1.68 \pm 0.21$	$2.1 {\pm} 0.09$	$1.53 \pm 0.12$	$1.87 {\pm} 0.15$	$2.09 \pm 0.12$
LTE	[Fe/H]	(dex)	$-0.3 \pm 0.01$	$-0.15\pm0.03$	$-0.22 \pm 0.01$	$-0.03 \pm 0.02$	$-0.26\pm0.01$	$-0.51 {\pm} 0.01$	$-0.0\pm0.02$	$-0.32 \pm 0.01$	$0.12 {\pm} 0.02$	$0.1 {\pm} 0.01$	$-0.17\pm0.01$	$-0.1 \pm 0.01$	$0.04 {\pm} 0.01$	$0.11 \pm 0.01$		$-2.97{\pm}0.01$	$-0.89 \pm 0.08$	$-2.53{\pm}0.12$	$-1.77\pm0.12$	$-2.78{\pm}0.03$	$-2.55\pm0.03$	$-3.13 \pm 0.04$	$-2.2 \pm 0.03$	$-2.16{\pm}0.01$	$-1.73\pm0.05$	$-1.99\pm0.1$	$-1.94{\pm}0.11$	$-2.44{\pm}0.13$	$-2.84{\pm}0.05$	$-2.89{\pm}0.02$	$-1.85\pm0.11$	$-1.7\pm0.08$
	$\log g$	(cgs)	$2.9 \pm 0.06$	$2.46{\pm}0.1$	$2.64{\pm}0.06$	$2.78{\pm}0.09$	$3.02 {\pm} 0.06$	$2.5 {\pm} 0.06$	$2.7 \pm 0.08$	$2.64{\pm}0.07$	$2.84{\pm}0.08$	$3.0{\pm}0.06$	$3.16{\pm}0.06$	$2.94{\pm}0.07$	$3.28{\pm}0.05$	$3.25{\pm}0.06$		$3.0 \pm 0.05$	$4.4 \pm 0.19$	$2.93{\pm}0.47$	$2.46{\pm}0.42$	$0.07 \pm 0.05$	$0.1 {\pm} 0.07$	$0.22 {\pm} 0.13$	$4.01 {\pm} 0.22$	$4.0 {\pm} 0.05$	$2.96 \pm 0.13$	$2.95{\pm}0.26$	$2.97 \pm 0.29$	$2.33 {\pm} 0.51$	$1.14 \pm 0.29$	$3.0 {\pm} 0.05$	$1.81 {\pm} 0.48$	$0.81 \pm 0.25$
	$T_{\rm eff}$	(K)	$4664 \pm 19$	$4428 \pm 27$	$4833 \pm 19$	$4594{\pm}27$	$4731 \pm 21$	$4942{\pm}16$	$4789{\pm}24$	$4839\pm 20$	$4770 \pm 27$	$4735\pm 22$	$4825\pm 20$	$4645\pm 22$	$4764 \pm 20$	$4842 \pm 23$		$6353 \pm 24$	$6041{\pm}116$	$5354{\pm}175$	$5216{\pm}151$	$4620 \pm 30$	$4659 \pm 23$	$4645 \pm 53$	$5547 \pm 59$	$6001{\pm}24$	$5171 \pm 65$	$5145{\pm}128$	$5221{\pm}145$	$5354{\pm}200$	$5293{\pm}103$	$5365 \pm 23$	$5140{\pm}160$	$4661{\pm}108$
	Star Name		22291753 - 0806290	$22122727 {-}0719010$	22292970 - 0713347	22130580 - 0658576	$22092886\!-\!0617515$	22153043 - 0617291	$22092416\!-\!0610474$	22085850 - 0608204	$22375413 {-}0604257$	$22354169 {-}0543252$	$22362945\!-\!0540124$	$22342769\!-\!0522505$	$22342069\!-\!0520353$	22344800 - 0516214		J03193531 - 3250433	J02401075 - 1416290	J00233067 - 1631428	J01334657 - 2727374	J00133067 - 1259594	J19215077 - 4452545	J23265258 - 0159248	J00405260 - 5122491	J15271353 - 2336177	J01530024 - 3417360	J16024498 - 1521016	J20514971 - 6158008	J16103106 + 1003055	J16184302 - 0630558	J21063474 - 4957500	J00021668 - 2453494	J02355867 - 6745520

# $\operatorname{NLTE}$ Stellar Parameters with <code>Lotus</code>

(continued)	
Table 3	

			LTE							NLTE				
Star Name	$T_{\rm eff}$	$\log g$	[Fe/H]	$v_{ m mic}$	$\rm N_{Fe_{I}}$	$\rm N_{FeI}$	$\chi_{ m Fe_{I}}{ m cutoff}$	$T_{\rm eff}$	$\log g$	[Fe/H]	$v_{ m mic}$	$N_{\rm Fe II}$	$\rm N_{FeI}$	$\chi_{ m Fe{}_{I}}{ m cutoff}$
	(K)	(cgs)	(dex)	$(\mathrm{km}~\mathrm{s}^{-1})$			(ev)	$(\mathbf{K})$	(cgs)	(dex)	$(\mathrm{km}~\mathrm{s}^{-1})$			(ev)
J13164824 - 2743351	$4821 \pm 95$	$1.78 \pm 0.3$	$-1.86\pm0.08$	$1.43 \pm 0.06$	65	14	2.7	$4806 \pm 91$	$1.96 \pm 0.27$	$-1.79\pm0.08$	$1.48 \pm 0.06$	99	14	2.7
$J14232679\!-\!2834200$	$4882 \pm 200$	$1.57{\pm}0.53$	$-2.19{\pm}0.17$	$1.39 {\pm} 0.08$	45	6	2.7	$4902{\pm}180$	$1.87 {\pm} 0.49$	$-2.08{\pm}0.15$	$1.43 {\pm} 0.07$	46	6	2.7
J14301385 - 2317388	$4352 \pm 51$	$0.67 {\pm} 0.13$	$-1.68{\pm}0.04$	$2.37 {\pm} 0.04$	54	13	2.7	$4298 \pm 39$	$0.65 \pm 0.11$	$-1.64{\pm}0.03$	$2.43 \pm 0.03$	54	13	2.7
J15575183 - 0839549	$4585{\pm}71$	$1.29 \pm 0.29$	$-1.82 \pm 0.07$	$1.92 \pm 0.06$	55	16	2.7	$4564{\pm}72$	$1.42 {\pm} 0.28$	$-1.74{\pm}0.07$	$1.96{\pm}0.04$	56	16	2.7
J16080681 - 3215592	$4531 \pm 27$	$0.49 {\pm} 0.18$	$-2.28\pm0.03$	$1.73 \pm 0.02$	89	15	1.2	$4460{\pm}26$	$0.63 {\pm} 0.14$	$-2.25\pm0.03$	$1.81 {\pm} 0.02$	89	15	1.2
J17273886 - 5133298	$5068{\pm}143$	$1.28 \pm 0.41$	$-1.85\pm0.08$	$2.07{\pm}0.16$	52	13	2.7	$5159{\pm}113$	$1.87 {\pm} 0.32$	$-1.67{\pm}0.06$	$2.28 {\pm} 0.13$	52	13	2.7
J17334285 - 5121550	$4864{\pm}153$	$0.99 {\pm} 0.37$	$-2.02{\pm}0.1$	$1.93 \pm 0.11$	46	14	2.7	$4891{\pm}167$	$1.22 \pm 0.44$	$-1.88\pm0.12$	$2.04{\pm}0.1$	47	14	2.7
$J18024226\!-\!4404426$	$4654 \pm 89$	$1.6 \pm 0.3$	$-1.65{\pm}0.08$	$1.94{\pm}0.04$	47	×	2.7	$4625 \pm 88$	$1.7 \pm 0.29$	$-1.57{\pm}0.08$	$1.97 {\pm} 0.05$	48	×	2.7
J19014952 - 4844359	$4602 \pm 26$	$1.06 \pm 0.11$	$-2.17\pm0.03$	$1.65 {\pm} 0.01$	72	2	0.0	$4549{\pm}27$	$1.14 \pm 0.11$	$-2.12 \pm 0.03$	$1.73 {\pm} 0.01$	73	7	0.0
J19324858 - 5908019	$4427 \pm 102$	$1.66 {\pm} 0.3$	$-2.13\pm0.08$	$1.72 {\pm} 0.08$	29	7	2.7	$4411 \pm 96$	$1.77{\pm}0.29$	$-2.09{\pm}0.08$	$1.75 {\pm} 0.09$	29	2	2.7
J20144608 - 5635300	$4828 \pm 115$	$1.36 \pm 0.39$	$-1.98{\pm}0.09$	$1.61 {\pm} 0.16$	15	11	2.7	$4773{\pm}130$	$1.53 \pm 0.41$	$-1.95{\pm}0.1$	$1.84 {\pm} 0.15$	16	11	2.7
$J22444701\!-\!5617540$	$4395{\pm}107$	$0.79{\pm}0.23$	$-2.09\pm0.08$	$1.8 \pm 0.09$	22	9	2.7	$4326{\pm}102$	$0.79{\pm}0.23$	$-2.09{\pm}0.08$	$1.95 {\pm} 0.08$	22	9	2.7
J22492756 - 2238289	$4768{\pm}105$	$1.09 \pm 0.31$	$-2.0{\pm}0.08$	$1.93 \pm 0.12$	44	-	2.7	$4782{\pm}102$	$1.38{\pm}0.29$	$-1.89 \pm 0.09$	$2.11 {\pm} 0.1$	44	4	2.7
J22531984 - 2248555	$4577 \pm 87$	$1.09 \pm 0.29$	$-2.11\pm0.07$	$1.58 {\pm} 0.07$	52	14	2.7	$4578 \pm 82$	$1.31 {\pm} 0.27$	$-2.03{\pm}0.07$	$1.66 {\pm 0.07}$	53	14	2.7
J23362202 - 5607498	$4459{\pm}106$	$0.81 {\pm} 0.24$	$-2.29\pm0.07$	$2.16{\pm}0.17$	13	×	2.7	$4495{\pm}109$	$0.9 \pm 0.27$	$-2.23\pm0.08$	$2.4{\pm}0.18$	14	×	2.7
J00002259 - 1302275	$4835{\pm}117$	$1.72 {\pm} 0.47$	$-2.46{\pm}0.1$	$2.4{\pm}0.33$	44	5	0.0	$4739 \pm 99$	$2.03{\pm}0.57$	$-2.52{\pm}0.09$	$2.52 \pm 0.3$	43	ŋ	0.0
J00021222 - 2241388	$5180{\pm}137$	$2.03 \pm 0.43$	$-2.16{\pm}0.07$	$1.74{\pm}0.21$	46	×	2.7	$5164{\pm}113$	$2.34{\pm}0.37$	$-2.05\pm0.05$	$1.78 {\pm} 0.27$	46	×	2.7
J00400685 - 4325183	$4458{\pm}156$	$0.66 {\pm} 0.45$	$-2.65{\pm}0.13$	$2.06{\pm}0.14$	25	-1	2.7	$4422 \pm 133$	$0.65 {\pm} 0.43$	$-2.55\pm0.13$	$2.04{\pm}0.14$	25	×	2.7
J00453930 - 7457294	$4727 \pm 37$	$1.49 \pm 0.17$	$-2.25\pm0.04$	$1.77 {\pm} 0.02$	83	15	1.2	$4684 \pm 35$	$1.65 {\pm} 0.16$	$-2.2 \pm 0.04$	$1.76 {\pm} 0.02$	83	15	1.2
J01202234 - 5425582	$5133 \pm 131$	$2.33 \pm 0.44$	$-2.11\pm0.08$	$1.45 {\pm} 0.16$	48	6	2.7	$5123{\pm}118$	$2.59{\pm}0.41$	$-2.01{\pm}0.08$	$1.39 \pm 0.19$	48	6	2.7
J01293113 - 1600454	$4678 \pm 133$	$1.09 \pm 0.41$	$-3.07{\pm}0.09$	$2.1 {\pm} 0.16$	26	11	2.7	$4800{\pm}134$	$1.76 {\pm} 0.35$	$-2.84{\pm}0.11$	$2.18 \pm 0.15$	26	11	2.7
J01425422 - 5032488	$5140 \pm 73$	$2.52 \pm 0.23$	$-2.18{\pm}0.06$	$1.66 {\pm} 0.06$	49	15	2.7	$5132\pm 84$	$2.74{\pm}0.27$	$-2.08{\pm}0.06$	$1.6 \pm 0.11$	49	15	2.7
J01430726 - 6445174	$4582 \pm 66$	$0.51 {\pm} 0.25$	$-3.11\pm0.05$	$1.86 \pm 0.1$	28	6	2.7	$4563{\pm}76$	$0.9 \pm 0.27$	$-2.95\pm0.07$	$1.79 \pm 0.07$	29	6	2.7
J01451951 - 2800583	$445 \pm 59$	$0.46 {\pm} 0.25$	$-2.89{\pm}0.05$	$1.63 {\pm} 0.03$	31	12	2.7	$4396{\pm}61$	$0.51{\pm}0.23$	$-2.8\pm0.06$	$1.61 {\pm} 0.03$	31	12	2.7
J01490794 - 4911429	$4691 \pm 72$	$0.77{\pm}0.24$	$-3.05{\pm}0.05$	$1.84 \pm 0.07$	29	14	2.7	$4845 \pm 81$	$1.61 {\pm} 0.22$	$-2.79\pm0.07$	$1.98 \pm 0.08$	29	14	2.7
J02040793 - 3127556	$4556 \pm 43$	$0.56{\pm}0.2$	$-3.17{\pm}0.04$	$2.1 {\pm} 0.06$	67	16	1.2	$4603 \pm 55$	$1.15 \pm 0.19$	$-3.01{\pm}0.07$	$2.24 \pm 0.07$	66	16	1.2
J02165716 - 7547064	$4531{\pm}64$	$0.48{\pm}0.26$	$-2.6{\pm}0.06$	$2.16 {\pm} 0.04$	40	9	2.7	$4537 \pm 65$	$0.7{\pm}0.24$	$-2.44{\pm}0.06$	$2.15 \pm 0.03$	40	11	2.7
J02412152 - 1825376	$4270 \pm 25$	$0.43 \pm 0.14$	$-2.3{\pm}0.02$	$1.52 \pm 0.03$	64	6	1.2	$4239\pm 24$	$0.45 \pm 0.12$	$-2.31 {\pm} 0.02$	$1.71 \pm 0.02$	63	10	1.2
J02441479 - 5158241	$5223{\pm}120$	$2.28{\pm}0.4$	$-2.78\pm0.08$	$2.0 {\pm} 0.1$	36	14	2.7	$5201{\pm}79$	$2.7{\pm}0.26$	$-2.64{\pm}0.06$	$1.94{\pm}0.12$	36	14	2.7
J02462013 - 1518419	$5047\pm 265$	$1.9 \pm 0.73$	$-2.77{\pm}0.2$	$2.69{\pm}0.22$	15	6	2.7	$5043{\pm}180$	$2.31 {\pm} 0.47$	$-2.61{\pm}0.13$	$2.62 \pm 0.24$	15	6	2.7
J02500719 - 5145148	$4575 \pm 37$	$0.96 \pm 0.18$	$-2.34{\pm}0.04$	$1.96 \pm 0.03$	85	12	1.2	$4527 \pm 38$	$1.11 \pm 0.16$	$-2.29\pm0.04$	$2.01{\pm}0.03$	85	12	1.2
J03563703 - 5838281	$4614 \pm 99$	$0.69 \pm 0.34$	$-2.78\pm0.08$	$2.1 \pm 0.06$	30	6	2.7	4713±110	$1.36 \pm 0.33$	$-2.55\pm0.1$	$2.07 \pm 0.06$	30	6	2.7

$\sim$
(continued)
Table 3

	cutoff	(A;	.2	.7	.7	.7	.7	2.	.7	2.	.2	.7	.7	.2	.7	.7	.7	.7	.7	.7	.7	.7	.7	-7	.7	.7	.7	.2	.7	.7	.7	.2	.7
	1 XFe1	(e	1	2	2	2	2	2	2	2	1	2	2	1	2	2	2	2	5	2	7	2	5	5	5	5	2	1	2	2	5	1	2
	$N_{\rm Fe}$		7	10	16	10	13	11	16	15	x	10	10	10	12	x	12	12	6	14	7	13	13	4	10	13	6	11	7	ъ	6	10	15
	$N_{\rm Fe II}$		22	53	38	34	48	29	44	39	53	33	26	41	35	38	43	58	27	60	38	34	41	38	32	53	19	78	36	11	25	43	42
	$v_{ m mic}$	$(\mathrm{km}~\mathrm{s}^{-1})$	$2.33\pm0.05$	$1.7 {\pm} 0.15$	$1.77 \pm 0.05$	$1.62 \pm 0.11$	$1.91 \pm 0.03$	$2.13 \pm 0.13$	$2.73 \pm 0.21$	$1.91 \pm 0.05$	$2.11\pm0.03$	$1.35 \pm 0.08$	$1.28 {\pm} 0.1$	$1.7 {\pm} 0.1$	$2.05\pm0.05$	$1.45 \pm 0.13$	$1.8{\pm}0.04$	$2.13\pm0.23$	$2.2 {\pm} 0.08$	$1.64 \pm 0.07$	$1.73 \pm 0.05$	$1.79 \pm 0.06$	$2.02 \pm 0.05$	$1.75 \pm 0.03$	$2.12 \pm 0.08$	$1.99 \pm 0.08$	$2.49 \pm 0.1$	$1.6{\pm}0.04$	$2.14\pm0.35$	$2.29\pm0.12$	$2.08 \pm 0.06$	$2.24 \pm 0.05$	$2.16 \pm 0.05$
NLTE	[Fe/H]	(dex)	$-2.78\pm0.06$	$-2.49\pm0.08$	$-2.7{\pm}0.1$	$-2.99{\pm}0.1$	$-2.41 \pm 0.05$	$-2.55\pm0.11$	$-2.39{\pm}0.09$	$-2.55\pm0.06$	$-2.41{\pm}0.06$	$-2.26{\pm}0.1$	$-2.54{\pm}0.13$	$-2.47{\pm}0.1$	$-2.5 {\pm} 0.07$	$-2.07{\pm}0.06$	$-2.37{\pm}0.08$	$-2.12\pm0.07$	$-2.78{\pm}0.08$	$-2.25\pm0.08$	$-2.48{\pm}0.1$	$-2.54{\pm}0.07$	$-2.46{\pm}0.09$	$-2.26{\pm}0.09$	$-2.38\pm0.03$	$-2.59{\pm}0.1$	$-2.63{\pm}0.14$	$-2.34{\pm}0.04$	$-2.06\pm0.09$	$-2.23{\pm}0.15$	$-2.62{\pm}0.11$	$-2.65{\pm}0.08$	$-2.45\pm0.07$
	$\log g$	(cgs)	$0.57 \pm 0.18$	$2.48{\pm}0.28$	$0.64 \pm 0.36$	$1.95 \pm 0.31$	$0.61 {\pm} 0.25$	$1.37 \pm 0.36$	$2.09 \pm 0.29$	$1.39 \pm 0.18$	$0.4 \pm 0.2$	$1.47{\pm}0.33$	$1.61 {\pm} 0.39$	$2.58{\pm}0.28$	$0.99 \pm 0.23$	$1.44{\pm}0.42$	$1.32 \pm 0.29$	$2.37 {\pm} 0.35$	$1.31 {\pm} 0.27$	$1.51{\pm}0.25$	$1.2 {\pm} 0.29$	$1.77{\pm}0.25$	$0.58{\pm}0.32$	$0.56 \pm 0.33$	$0.3 {\pm} 0.18$	$1.25 {\pm} 0.3$	$1.35 {\pm} 0.47$	$1.04{\pm}0.16$	$2.21{\pm}0.57$	$2.4{\pm}0.67$	$1.47{\pm}0.34$	$0.96 \pm 0.21$	$0.52 {\pm} 0.26$
	$T_{ m eff}$	(K)	$4515 \pm 48$	$5116\pm 102$	$4475 \pm 115$	$4791{\pm}113$	$4368 \pm 57$	$4784{\pm}128$	$5222 \pm 119$	4767±70	$4448 \pm 50$	$4712 \pm 118$	$4855 {\pm} 158$	$4998 \pm 97$	$4671{\pm}77$	$4773 \pm 95$	$4625 \pm 96$	$5203\pm121$	$4657 \pm 89$	$4735 \pm 88$	$4624 \pm 96$	$4823 \pm 91$	$4556 \pm 91$	$4538 \pm 88$	$4377 \pm 22$	$4681{\pm}109$	$4668{\pm}164$	$4451{\pm}38$	$5039 \pm 155$	$4841{\pm}190$	$4733{\pm}123$	$4672{\pm}62$	$4442 \pm 81$
	$\chi_{ m Fe_{I}}{ m cutoff}$	(ev)	1.2	2.7	2.7	2.7	2.7	2.7	2.7	2.7	1.2	2.7	2.7	1.2	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	1.2	2.7	2.7	2.7	1.2	2.7
	$\rm N_{FeI}$		4	10	16	10	14	11	16	15	x	10	10	10	12	x	12	14	6	14	7	13	6	4	10	13	6	11	7	ъ	6	10	15
	$N_{\rm Fe_{\rm I}}$		22	53	38	34	47	29	44	39	53	33	26	41	35	38	43	58	27	09	38	34	41	38	32	53	19	81	36	11	25	41	42
	$v_{ m mic}$	$(\mathrm{km}~\mathrm{s}^{-1})$	$2.21 \pm 0.05$	$1.76 {\pm} 0.11$	$1.77 \pm 0.06$	$1.55 \pm 0.12$	$1.9 \pm 0.03$	$2.16\pm0.13$	$2.63 \pm 0.22$	$1.86 {\pm} 0.05$	$2.12 \pm 0.05$	$1.42 {\pm} 0.09$	$1.24 {\pm} 0.12$	$1.8 {\pm} 0.09$	$2.13 \pm 0.05$	$1.41 \pm 0.13$	$1.8 {\pm} 0.05$	$2.13 \pm 0.24$	$2.19 \pm 0.09$	$1.62 {\pm} 0.07$	$1.8 {\pm} 0.05$	$1.78 \pm 0.07$	$2.1 {\pm} 0.1$	$1.74 {\pm} 0.05$	$1.99 \pm 0.09$	$1.96 {\pm} 0.08$	$2.53 \pm 0.13$	$1.45 {\pm} 0.03$	$2.05 \pm 0.36$	$2.41 \pm 0.14$	$2.09{\pm}0.1$	$2.46 {\pm} 0.05$	$2.15 \pm 0.05$
LTE	[Fe/H]	(dex)	$-2.82 \pm 0.06$	$-2.69{\pm}0.09$	$-2.78{\pm}0.07$	$-3.14{\pm}0.1$	$-2.44{\pm}0.04$	$-2.79{\pm}0.08$	$-2.58{\pm}0.09$	$-2.82 \pm 0.04$	$-2.49{\pm}0.06$	$-2.49{\pm}0.1$	$-2.77{\pm}0.13$	$-2.55\pm0.1$	$-2.66{\pm}0.05$	$-2.18{\pm}0.09$	$-2.52{\pm}0.07$	$-2.28{\pm}0.07$	$-3.03{\pm}0.06$	$-2.4{\pm}0.07$	$-2.67{\pm}0.08$	$-2.77{\pm}0.07$	$-2.65{\pm}0.12$	$-2.32\pm0.06$	$-2.4{\pm}0.02$	$-2.83{\pm}0.07$	$-2.81{\pm}0.12$	$-2.4{\pm}0.03$	$-2.17{\pm}0.13$	$-2.33{\pm}0.17$	$-2.83 {\pm} 0.1$	$-2.83{\pm}0.04$	$-2.5\pm0.05$
	$\log g$	(cgs)	$0.48 {\pm} 0.25$	$1.97 \pm 0.32$	$0.53 {\pm} 0.33$	$1.51 {\pm} 0.36$	$0.53{\pm}0.27$	$0.72 {\pm} 0.38$	$1.37 \pm 0.38$	$0.57 {\pm} 0.24$	$0.37 {\pm} 0.24$	$0.88 {\pm} 0.43$	$0.99 \pm 0.5$	$2.36{\pm}0.33$	$0.49{\pm}0.27$	$1.1 \pm 0.57$	$0.93 {\pm} 0.33$	$1.85 {\pm} 0.43$	$0.6 {\pm} 0.29$	$1.16 \pm 0.3$	$0.71 {\pm} 0.34$	$1.17 \pm 0.28$	$0.56{\pm}0.43$	$0.48{\pm}0.32$	$0.23 {\pm} 0.17$	$0.59{\pm}0.32$	$0.89 {\pm} 0.52$	$0.59{\pm}0.21$	$1.87 {\pm} 0.69$	$2.09{\pm}0.66$	$0.87 {\pm} 0.41$	$0.49 \pm 0.19$	$0.46 \pm 0.29$
	$T_{ m eff}$	(K)	$4601 \pm 57$	$5040 \pm 127$	$4555 \pm 95$	$4729{\pm}127$	$4458 \pm 50$	$4697{\pm}119$	$5298{\pm}175$	$4620 \pm 58$	$4525 \pm 55$	$4611 \pm 123$	$4745{\pm}174$	$5019{\pm}113$	$4666 \pm 66$	$4760{\pm}136$	$4594 \pm 91$	$5198{\pm}147$	$4526{\pm}79$	$4706 \pm 93$	$4572 \pm 92$	$4700 \pm 90$	$4574{\pm}150$	$4641{\pm}65$	$4449{\pm}21$	$4568 \pm 88$	$4608{\pm}160$	$4426 \pm 31$	$5029\pm 209$	$4841{\pm}204$	$4648{\pm}129$	$4708 \pm 45$	$4523 \pm 72$
	Star Name		J04121388 - 1205050	J14033542 - 3335257	J14164084 - 2422000	J14325334 - 4125494	J14381119 - 2120085	J15260106 - 0911388	J15582962 - 1224344	J16095117 - 0941174	J17093199 - 6027271	J17094926 - 6239285	J17124284 - 5211479	J17225742 - 7123000	J17255680 - 6603395	J17285930 - 7427532	J17400682 - 6102129	J17435113 - 5359333	J18121045 - 4934495	J18285086 - 3434203	J18294122 - 4504000	J18362318 - 6428124	J18363613 - 7136597	J18562774 - 7251331	J19161821 - 5544454	J19172402 - 4211240	J19173310 - 6628545	J19202070 - 6627202	J19232518 - 5833410	J19345497 - 5751400	J19494025 - 5424113	J19534978 - 5940001	J19594558 - 2549075

# $\operatorname{NLTE}$ Stellar Parameters with <code>Lotus</code>

continued)	
Table 3 (	

			LTE							NLTE				
Star Name	$T_{\rm eff}$	$\log g$	[Fe/H]	$v_{ m mic}$	$\rm N_{Fe_{I}}$	$\rm N_{Fe I}$	$\chi_{\mathrm{Fe_{I}}}\mathrm{cutoff}$	$T_{ m eff}$	$\log g$	[Fe/H]	$v_{ m mic}$	$N_{\rm Fe II}$	$\rm N_{Fe {}_{I}}$	$\chi_{\mathrm{FeI}}\mathrm{cutoff}$
	(K)	(cgs)	(dex)	$(\mathrm{km}~\mathrm{s}^{-1})$			(ev)	(K)	(cgs)	(dex)	$(\mathrm{km}~\mathrm{s}^{-1})$			(ev)
J20165357 - 0503592	$4546{\pm}105$	$0.6 \pm 0.33$	$-2.96\pm0.09$	$2.11 \pm 0.11$	35	2	2.7	$4639 \pm 127$	$1.21 \pm 0.36$	$-2.74{\pm}0.13$	$2.13 \pm 0.09$	35	7	2.7
J2030339 - 2519500	$4378 \pm 17$	$0.06 \pm 0.05$	$-2.29{\pm}0.02$	$1.75 \pm 0.03$	65	16	2.7	$4312 \pm 23$	$0.12 \pm 0.11$	$-2.24{\pm}0.02$	$1.83 {\pm} 0.05$	65	16	2.7
J20313531 - 3127319	$4658{\pm}107$	$0.7 {\pm} 0.34$	$-2.72{\pm}0.08$	$1.96 \pm 0.09$	28	10	2.7	$4759 \pm 125$	$1.36 {\pm} 0.33$	$-2.49\pm0.11$	$1.98 \pm 0.11$	28	10	2.7
J20445584 - 2250597	$4330 \pm 44$	$0.5 {\pm} 0.23$	$-2.49{\pm}0.03$	$2.03 \pm 0.03$	54	14	2.7	$4266 \pm 51$	$0.5 {\pm} 0.24$	$-2.49\pm0.04$	$2.21{\pm}0.04$	55	14	2.7
J20492765 - 5124440	$4503{\pm}67$	$0.55 {\pm} 0.28$	$-2.49{\pm}0.06$	$1.81 \pm 0.04$	38	6	2.7	$4492 \pm 76$	$0.87 {\pm} 0.27$	$-2.39\pm0.07$	$1.83 {\pm} 0.03$	38	6	2.7
$J20542346\!-\!0033097$	$4414{\pm}57$	$0.52 \pm 0.27$	$-2.87{\pm}0.05$	$2.53 {\pm} 0.06$	36	13	2.7	$4402{\pm}78$	$0.76{\pm}0.27$	$-2.77\pm0.08$	$2.49{\pm}0.05$	37	13	2.7
J20560913 - 1331176	$4615 \pm 53$	$0.98{\pm}0.2$	$-2.5 \pm 0.04$	$1.65 \pm 0.02$	58	17	2.7	$4668 \pm 54$	$1.41 {\pm} 0.16$	$-2.34{\pm}0.05$	$1.63 {\pm} 0.02$	58	17	2.7
J21023752 - 5316132	$5198{\pm}289$	$2.4 \pm 0.94$	$-2.32{\pm}0.22$	$1.36 {\pm} 0.36$	29	6	2.7	$5178{\pm}162$	$2.6\pm0.5$	$-2.22 \pm 0.08$	$1.22 \pm 0.33$	29	6	2.7
J21064294 - 6828266	$4830 \pm 255$	$1.7 {\pm} 0.76$	$-3.1 \pm 0.21$	$2.76 {\pm} 0.17$	11	6	2.7	$4843 \pm 251$	$2.08{\pm}0.74$	$-2.97{\pm}0.21$	$2.79{\pm}0.15$	11	6	2.7
J21091825 - 1310062	$4746{\pm}106$	$0.97 {\pm} 0.35$	$-2.51{\pm}0.08$	$1.79 {\pm} 0.06$	46	18	2.7	$4820{\pm}103$	$1.53 {\pm} 0.29$	$-2.31 {\pm} 0.09$	$1.8 {\pm} 0.05$	46	18	2.7
J21095804 - 0945400	$4493 \pm 77$	$0.68 {\pm} 0.3$	$-2.85{\pm}0.06$	$1.79 \pm 0.07$	19	7	2.7	$4555 \pm 83$	$1.15 \pm 0.27$	$-2.66\pm0.08$	$1.77 \pm 0.05$	19	7	2.7
J21141350 - 5726363	$4515{\pm}67$	$0.51 {\pm} 0.24$	$-2.95{\pm}0.06$	$1.94{\pm}0.05$	57	7	2.7	$4590{\pm}79$	$1.12 \pm 0.23$	$-2.74{\pm}0.09$	$1.96 {\pm} 0.05$	57	7	2.7
J21152551 - 1503309	$4505{\pm}72$	$0.52 \pm 0.33$	$-2.32{\pm}0.05$	$1.77 \pm 0.06$	38	14	2.7	$4458 \pm 82$	$0.69{\pm}0.3$	$-2.29\pm0.07$	$1.86 {\pm} 0.03$	37	10	Ļı ~i
J21162185 - 0213420	$4418 \pm 25$	$0.08 \pm 0.06$	$-2.33\pm0.03$	$1.48 \pm 0.04$	41	7	2.7	$4234 \pm 43$	$0.45 {\pm} 0.25$	$-2.44{\pm}0.05$	$1.86 {\pm} 0.05$	37	2	5. ²
$J21224590\!-\!4641030$	$4743{\pm}123$	$1.11 \pm 0.41$	$-2.9{\pm}0.09$	$2.23 \pm 0.13$	24	11	2.7	$4842 \pm 125$	$1.75{\pm}0.33$	$-2.68{\pm}0.11$	$2.25 \pm 0.12$	24	11	J. S
J21262525 - 2144243	$4362{\pm}61$	$0.57 {\pm} 0.26$	$-2.93{\pm}0.06$	$1.84 \pm 0.04$	52	10	2.7	$4400 \pm 66$	$0.96{\pm}0.23$	$-2.78\pm0.07$	$1.82 \pm 0.04$	52	10	ĄL ∾i
J21291592 - 4236219	$4602{\pm}104$	$0.82 {\pm} 0.38$	$-2.63{\pm}0.08$	$2.08 \pm 0.07$	43	14	2.7	$4673{\pm}110$	$1.34{\pm}0.32$	$-2.44{\pm}0.1$	$2.05{\pm}0.06$	43	14	2.7
J21370807 - 0927347	$4507{\pm}119$	$0.72 {\pm} 0.5$	$-2.53{\pm}0.1$	$1.86 {\pm} 0.09$	34	x	2.7	$4364{\pm}109$	$0.63 {\pm} 0.37$	$-2.52 \pm 0.11$	$1.84{\pm}0.08$	36	x	2.7
J21513595 - 0543398	$4489{\pm}71$	$0.44 {\pm} 0.24$	$-2.59{\pm}0.06$	$2.02 \pm 0.04$	42	14	2.7	$4412 \pm 52$	$0.49{\pm}0.2$	$-2.55{\pm}0.05$	$2.08 {\pm} 0.05$	42	14	2.7
J22021636 - 0536483	$4695{\pm}58$	$0.74 {\pm} 0.25$	$-2.76{\pm}0.05$	$2.03 {\pm} 0.07$	42	10	1.2	$4731{\pm}68$	$1.31 {\pm} 0.24$	$-2.57{\pm}0.08$	$2.06{\pm}0.05$	42	10	1.2
$J22163596 {+} 0246171$	$4759{\pm}114$	$1.41 \pm 0.34$	$-2.51{\pm}0.1$	$1.49 {\pm} 0.06$	49	7	2.7	$4761 \pm 104$	$1.7 {\pm} 0.28$	$-2.39{\pm}0.1$	$1.44{\pm}0.05$	49	4	2.7
J22595884 - 1554182	$4552 \pm 101$	$0.57 {\pm} 0.33$	$-2.73{\pm}0.08$	$2.14{\pm}0.05$	44	12	2.7	$4543{\pm}118$	$0.87 {\pm} 0.37$	$-2.57{\pm}0.11$	$2.05{\pm}0.05$	44	12	2.7
$J23022289\!-\!6833233$	$5232 \pm 162$	$2.23{\pm}0.51$	$-2.52{\pm}0.11$	$1.79 \pm 0.17$	39	7	2.7	$5227 \pm 144$	$2.72 {\pm} 0.49$	$-2.39{\pm}0.1$	$1.82 {\pm} 0.29$	39	7	2.7
J23044914 - 4243477	$4670 \pm 98$	$1.58 {\pm} 0.32$	$-2.48{\pm}0.09$	$0.79{\pm}0.07$	26	12	1.2	$4634 \pm 91$	$1.68 {\pm} 0.27$	$-2.43\pm0.09$	$0.77 {\pm} 0.07$	26	12	1.2
J23130003 - 4507066	$4589 \pm 83$	$0.57 \pm 0.32$	$-2.68{\pm}0.06$	$1.79 {\pm} 0.06$	35	13	2.7	$4675 \pm 100$	$1.17 \pm 0.31$	$-2.46{\pm}0.09$	$1.79 \pm 0.07$	35	13	2.7
J23310716 - 0223301	$4873 \pm 228$	$1.08 \pm 0.64$	$-2.5 {\pm} 0.16$	$2.06 {\pm} 0.18$	12	3	2.7	$4938 \pm 201$	$1.68 {\pm} 0.56$	$-2.28{\pm}0.16$	$2.06 \pm 0.2$	12	3	2.7
No	TE													

 †  For HD121370, parameters are obtained with the average of runs inputting 3 different EW line lists: EPINARBO in Heiter et al. (2015), BOLOGNA in Heiter et al. (2015) and Takeda et al. (2005). In LTE, there are N_{Fel}=79, 121, 46, N_{Fel}=6, 9, 4 lines in tese three line list respectively; In NLTE, N_{Fel}=79, 121, 47, N_{Fel}=6, 9, 4

. (This table is available in machine—readable form.)

38

## REFERENCES

- Ahumada, R., Prieto, C. A., Almeida, A., et al. 2020, ApJS, 249, 3, doi: 10.3847/1538-4365/ab929e
- Amarsi, A. M., Lind, K., Asplund, M., Barklem, P. S., & Collet, R. 2016, MNRAS, 463, 1518, doi: 10.1093/mnras/stw2077
- Amarsi, A. M., Lind, K., Osorio, Y., et al. 2020, A&A, 642, A62,
- doi: 10.1051/0004-6361/202038650 Asplund, M. 2005, ARA&A, 43, 481,
- doi: 10.1146/annurev.astro.42.053102.134001
- Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481,
- doi: 10.1146/annurev.astro.46.060407.145222
- Astropy Collaboration, Robitaille, T. P., Tollerud,
  E. J., et al. 2013, A&A, 558, A33,
  doi: 10.1051/0004-6361/201322068
- Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
- Audouze, J., & Tinsley, B. M. 1976, ARA&A, 14, 43, doi: 10.1146/annurev.aa.14.090176.000355
- Barklem, P. S. 2018, A&A, 612, A90, doi: 10.1051/0004-6361/201732365
- Bergemann, M., Lind, K., Collet, R., Magic, Z., & Asplund, M. 2012, MNRAS, 427, 27, doi: 10.1111/j.1365-2966.2012.21687.x
- Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki, S., & Athey, A. E. 2003, in Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, ed. M. Iye & A. F. M. Moorwood, Vol. 4841, International Society for Optics and Photonics (SPIE), 1694 – 1704, doi: 10.1117/12.461502
- Boeche, C., & Grebel, E. K. 2016, A&A, 587, A2, doi: 10.1051/0004-6361/201526758
- Brodtkorb, P. A., & D'Errico, J. 2015, numdifftools 0.9.11,
- https://github.com/pbrod/numdifftools
- Buitinck, L., Louppe, G., Blondel, M., et al. 2013, in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108–122
- Cantat-Gaudin, T., Donati, P., Pancino, E., et al. 2014, A&A, 562, A10, doi: 10.1051/0004-6361/201322533
- Casagrande, L., Ramírez, I., Meléndez, J., Bessell, M., & Asplund, M. 2010, A&A, 512, A54, doi: 10.1051/0004-6361/200913204

- Casagrande, L., Schönrich, R., Asplund, M., et al. 2011, A&A, 530, A138, doi: 10.1051/0004-6361/201016276
- Collette, A. 2013, Python and HDF5 (O'Reilly)
- Creevey, O., Grundahl, F., Thévenin, F., et al. 2019, A&A, 625, A33, doi: 10.1051/0004-6361/201834721
- Creevey, O. L., Thévenin, F., Boyajian, T. S., et al. 2012, A&A, 545, A17, doi: 10.1051/0004-6361/201219651
- Creevey, O. L., Thévenin, F., Berio, P., et al. 2015, A&A, 575, A26, doi: 10.1051/0004-6361/201424310
- Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, Research in Astronomy and Astrophysics, 12, 1197, doi: 10.1088/1674-4527/12/9/003
- Dalton, G., Trager, S., Abrams, D. C., et al. 2016, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9908, Ground-based and Airborne Instrumentation for Astronomy VI, ed. C. J. Evans, L. Simard, & H. Takami, 99081G, doi: 10.1117/12.2231078
- de Jong, R. S., Agertz, O., Berbel, A. A., et al. 2019, The Messenger, 175, 3, doi: 10.18727/0722-6691/5117
- De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., et al. 2015, MNRAS, 449, 2604, doi: 10.1093/mnras/stv327
- Deng, L.-C., Newberg, H. J., Liu, C., et al. 2012, Research in Astronomy and Astrophysics, 12, 735, doi: 10.1088/1674-4527/12/7/003
- Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, ApJS, 178, 89, doi: 10.1086/589654
- Ezzeddine, R., Frebel, A., & Plez, B. 2017, ApJ, 847, 142, doi: 10.3847/1538-4357/aa8875
- Ezzeddine, R., Merle, T., & Plez, B. 2016, Astronomische Nachrichten, 337, 850, doi: 10.1002/asna.201612384
- Ezzeddine, R., Rasmussen, K., Frebel, A., et al. 2020, ApJ, 898, 150, doi: 10.3847/1538-4357/ab9d1a
- Foreman-Mackey, D. 2016, The Journal of Open Source Software, 1, 24, doi: 10.21105/joss.00024
- Frebel, A., Casey, A. R., Jacobson, H. R., & Yu, Q. 2013, ApJ, 769, 57, doi: 10.1088/0004-637X/769/1/57

García Pérez, A. E., Allende Prieto, C., Holtzman,
J. A., et al. 2016, AJ, 151, 144,
doi: 10.3847/0004-6256/151/6/144
Geman, S., & Geman, D. 1984, IEEE

Transactions on Pattern Analysis and Machine Intelligence, PAMI-6, 721, doi: 10.1109/TPAMI.1984.4767596

Giribaldi, R. E., da Silva, A. R., Smiljanic, R., & Cornejo Espinoza, D. 2021, A&A, 650, A194, doi: 10.1051/0004-6361/202140751

Griffin, R. E. M., & Lynas-Gray, A. E. 1999, AJ, 117, 2998, doi: 10.1086/300878

Gustafsson, B., Bell, R. A., Eriksson, K., & Nordlund, A. 1975, A&A, 42, 407

Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951, doi: 10.1051/0004-6361:200809724

Hansen, T. T., Holmbeck, E. M., Beers, T. C., et al. 2018, ApJ, 858, 92, doi: 10.3847/1538-4357/aabacc

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2

Hauschildt, P. H., Baron, E., & Allard, F. 1997, ApJ, 483, 390, doi: 10.1086/304233

Hawkins, K., Jofré, P., Heiter, U., et al. 2016, A&A, 592, A70, doi: 10.1051/0004-6361/201628268

Heiter, U., Jofré, P., Gustafsson, B., et al. 2015, A&A, 582, A49, doi: 10.1051/0004-6361/201526319

Heiter, U., Lind, K., Bergemann, M., et al. 2021, A&A, 645, A106, doi: 10.1051/0004-6361/201936291

Holmbeck, E. M., Hansen, T. T., Beers, T. C., et al. 2020, ApJS, 249, 30, doi: 10.3847/1538-4365/ab9c19

Hubeny, I., & Mihalas, D. 2014, Theory of Stellar Atmospheres

Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90, doi: 10.1109/MCSE.2007.55Jofré, P., Heiter, U., & Soubiran, C. 2019,

ARA&A, 57, 571, doi: 10.1146/annurev-astro-091918-104509

Jofré, P., Heiter, U., Soubiran, C., et al. 2014, A&A, 564, A133,

doi: 10.1051/0004-6361/201322440

Karovicova, I., White, T. R., Nordlander, T., et al. 2021a, arXiv e-prints, arXiv:2109.06203. https://arxiv.org/abs/2109.06203

—. 2021b, arXiv e-prints, arXiv:2109.13258. https://arxiv.org/abs/2109.13258 —. 2020, A&A, 640, A25, doi: 10.1051/0004-6361/202037590 —. 2018, MNRAS, 475, L81, doi: 10.1093/mnrasl/sly010 Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. 2006, ApJ, 653, 1145, doi: 10.1086/508914 Kollmeier, J. A., Zasowski, G., Rix, H.-W., et al. 2017, arXiv e-prints, arXiv:1711.03234. https://arxiv.org/abs/1711.03234 Lacour, S., Meimon, S., Thiébaut, E., et al. 2008, A&A, 485, 561, doi: 10.1051/0004-6361:200809611 Lind, K., Bergemann, M., & Asplund, M. 2012, MNRAS, 427, 50, doi: 10.1111/j.1365-2966.2012.21686.x Linsky, J. L. 2017, ARA&A, 55, 159, doi: 10.1146/annurev-astro-091916-055327 Liu, C., Fu, J., Shi, J., et al. 2020, arXiv e-prints, arXiv:2005.07210. https://arxiv.org/abs/2005.07210 Magrini, L., Randich, S., Friel, E., et al. 2013, A&A, 558, A38, doi: 10.1051/0004-6361/201321844 Mashonkina, L., Gehren, T., Shi, J. R., Korn, A. J., & Grupp, F. 2011, A&A, 528, A87, doi: 10.1051/0004-6361/201015336 Mashonkina, L., Jablonka, P., Sitnova, T., Pakhomov, Y., & North, P. 2017, A&A, 608, A89, doi: 10.1051/0004-6361/201731582 McWilliam, A. 1997, ARA&A, 35, 503, doi: 10.1146/annurev.astro.35.1.503 Metropolis, N., & Ulam, S. 1949, Journal of the American Statistical Association, 44, 335, doi: 10.1080/01621459.1949.10483310 Meurer, A., Smith, C. P., Paprocki, M., et al. 2017, PeerJ Computer Science, 3, e103, doi: 10.7717/peerj-cs.103 Miesch, M. S., & Toomre, J. 2009, Annual Review of Fluid Mechanics, 41, 317, doi: 10.1146/annurev.fluid.010908.165215 Miglio, A., Chiappini, C., Mosser, B., et al. 2017, Astronomische Nachrichten, 338, 644, doi: 10.1002/asna.201713385

Mihalas, D., & Athay, R. G. 1973, ARA&A, 11, 187, doi: 10.1146/annurev.aa.11.090173.001155

Morel, T., Miglio, A., Lagarde, N., et al. 2014, VizieR Online Data Catalog, J/A+A/564/A119

- Mucciarelli, A., Pancino, E., Lovisi, L., Ferraro, F. R., & Lapenna, E. 2013, ApJ, 766, 78, doi: 10.1088/0004-637X/766/2/78
- Neal, R. M. 2003, The Annals of Statistics, 31, 705 , doi: 10.1214/aos/1056562461
- Osorio, Y., Barklem, P. S., Lind, K., et al. 2015, A&A, 579, A53,
- doi: 10.1051/0004-6361/201525846 pandas development team, T. 2020,
- pandas-dev/pandas: Pandas, latest, Zenodo, doi: 10.5281/zenodo.3509134
- Piskunov, N., & Valenti, J. A. 2017, A&A, 597, A16, doi: 10.1051/0004-6361/201629124

Quirrenbach, A., Mozurkewich, D., Buscher, D. F., Hummel, C. A., & Armstrong, J. T. 1996, A&A, 312, 160

Ramírez, I., & Allende Prieto, C. 2011, ApJ, 743, 135, doi: 10.1088/0004-637X/743/2/135

Recio-Blanco, A., Bijaoui, A., & de Laverny, P. 2006, MNRAS, 370, 141, doi: 10.1111/j.1365-2966.2006.10455.x

- Roederer, I. U., Sakari, C. M., Placco, V. M., et al. 2018, The Astrophysical Journal, 865, 129, doi: 10.3847/1538-4357/aadd92
- Rybicki, G. B., & Hummer, D. G. 1991, A&A, 245, 171
- Sakari, C. M., Placco, V. M., Farrell, E. M., et al. 2018, ApJ, 868, 110, doi: 10.3847/1538-4357/aae9df
- Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. 2016, PeerJ Computer Science, 2, e55

Sbordone, L., Caffau, E., Bonifacio, P., & Duffau, S. 2014, A&A, 564, A109, doi: 10.1051/0004-6361/201322430

- Sousa, S. G., Santos, N. C., Adibekyan, V., Delgado-Mena, E., & Israelian, G. 2015, A&A, 577, A67, doi: 10.1051/0004-6361/201425463
- Steinmetz, M., Matijevič, G., Enke, H., et al. 2020, AJ, 160, 82, doi: 10.3847/1538-3881/ab9ab9

Storn, R., & Price, K. 1996, in Proceedings of IEEE International Conference on Evolutionary Computation, 842–844, doi: 10.1109/ICEC.1996.542711 Tabernero, H. M., Marfil, E., Montes, D., & González Hernández, J. I. 2019, A&A, 628, A131, doi: 10.1051/0004-6361/201935465

- Takeda, Y., Sato, B., Kambe, E., et al. 2005, PASJ, 57, 109, doi: 10.1093/pasj/57.1.109
- Takeda, Y., & Tajitsu, A. 2015, MNRAS, 450, 397, doi: 10.1093/mnras/stv682
- Team, T. T. D., Al-Rfou, R., Alain, G., et al. 2016, arXiv preprint arXiv:1605.02688
- Tsantaki, M., & Andreasen, D. 2021, in The 20.5th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CS20.5), Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, 172, doi: 10.5281/zenodo.4565462
- Tsantaki, M., Santos, N. C., Sousa, S. G., et al. 2019, MNRAS, 485, 2772, doi: 10.1093/mnras/stz578
- van der Walt, S., Colbert, S. C., & Varoquaux, G.
  2011, Computing in Science and Engineering,
  13, 22, doi: 10.1109/MCSE.2011.37
- Vanderburg, A., Plavchan, P., Johnson, J. A., et al. 2016, MNRAS, 459, 3565, doi: 10.1093/mnras/stw863
- Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2
- Wehrhahn, A. 2021, in The 20.5th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CS20.5), Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, 1, doi: 10.5281/zenodo.4537913
- Wijbenga, J. W., & Zwaan, C. 1972, SoPh, 23, 265, doi: 10.1007/BF00148089
- Worley, C. C., Jofré, P., Rendle, B., et al. 2020, A&A, 643, A83, doi: 10.1051/0004-6361/201936726
- Zhao, G., Zhao, Y., Chu, Y., Jing, Y., & Deng, L. 2012, arXiv e-prints, arXiv:1206.3569. https://arxiv.org/abs/1206.3569